Improving Togetherness Using Structural Entropy | SpringerLink
Skip to main content

Improving Togetherness Using Structural Entropy

  • Conference paper
  • First Online:
Mobile Computing, Applications, and Services (MobiCASE 2021)

Abstract

A major theme in the study of social dynamics is the formation of a community structure on a social network, i.e., the network contains several densely connected region that are sparsely linked between each other. In this paper, we investigate the network integration process in which edges are added to dissolve the communities into a single unified network. In particular, we study the following problem which we refer to as togetherness improvement: given two communities in a network, iteratively establish new edges between the communities so that they appear as a single community in the network. Towards an effective strategy for this process, we employ tools from structural information theory. The aim here is to capture the inherent amount of structural information that is encoded in a community, thereby identifying the edge to establish which will maximize the information of the combined community. Based on this principle, we design an efficient algorithm that iteratively establish edges. Experimental results validate the effectiveness of our algorithm for network integration compared to existing benchmarks.

Z. Zhang—This paper is supported by National Natural Science Foundation of China No. 62172040, No. U1836212, No. 61872041.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www-personal.umich.edu/~mejn/netdata/.

References

  1. Anand, K., Bianconi, G.: Entropy measures for networks: toward an information theory of complex topologies. Phys. Rev. E 80(4), 045102 (2009)

    Google Scholar 

  2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  3. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Soc. Netw. 28(4), 466–484 (2006)

    Article  Google Scholar 

  4. Braunstein, S.L., Ghosh, S., Mansour, T., Severini, S., Wilson, R.C.: Some families of density matrices for which separability is easily tested. Phys. Rev. A 73(1), 012320 (2006)

    Google Scholar 

  5. Brooks, F.P., Jr.: Three great challenges for half-century-old computer science. J. ACM (JACM) 50(1), 25–26 (2003)

    Article  Google Scholar 

  6. Bruhn, J.: The concept of social cohesion. In: Bruhn, J. (ed.) The Group Effect, pp. 31–48. Springer, Boston (2009). https://doi.org/10.1007/978-1-4419-0364-8_2

    Chapter  Google Scholar 

  7. Cai, Y., Zheng, H., Liu, J., Yan, B., Su, H., Liu, Y.: Balancing the pain and gain of hobnobbing: utility-based network building over atributed social networks. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pp. 193–201 (2018)

    Google Scholar 

  8. Chen, Q., Su, H., Liu, J., Yan, B., Zheng, H., Zhao, H.: In pursuit of social capital: upgrading social circle through edge rewiring. In: Shao, J., Yiu, M.L., Toyoda, M., Zhang, D., Wang, W., Cui, B. (eds.) APWeb-WAIM 2019. LNCS, vol. 11641, pp. 207–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26072-9_15

    Chapter  Google Scholar 

  9. Chunaev, P.: Community detection in node-attributed social networks: a survey. Comput. Sci. Rev. 37, 100286 (2020)

    Google Scholar 

  10. Dehmer, M.: Information processing in complex networks: graph entropy and information functionals. Appl. Math. Comput. 201(1–2), 82–94 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007)

    Article  Google Scholar 

  12. Fortunato, S., Lancichinetti, A.: Community detection algorithms: a comparative analysis: invited presentation, extended abstract. In: Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools, pp. 1–2 (2009)

    Google Scholar 

  13. Jiang, H., Carroll, J.M.: Social capital, social network and identity bonds: a reconceptualization. In: Proceedings of the Fourth International Conference on Communities and Technologies, pp. 51–60 (2009)

    Google Scholar 

  14. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Google Scholar 

  15. Li, A., Pan, Y.: Structural information and dynamical complexity of networks. IEEE Trans. Inf. Theory 62(6), 3290–3339 (2016)

    Article  MathSciNet  Google Scholar 

  16. Liu, J., Wei, Z.: Network, popularity and social cohesion: a game-theoretic approach. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  17. Liu, Y., et al.: From local to global norm emergence: dissolving self-reinforcing substructures with incremental social instruments. In: International Conference on Machine Learning, pp. 6871–6881. PMLR (2021)

    Google Scholar 

  18. Liu, Y., Liu, J., Zhang, Z., Zhu, L., Li, A.: REM: from structural entropy to community structure deception. Adv. Neural. Inf. Process. Syst. 32, 12938–12948 (2019)

    Google Scholar 

  19. Moskvina, A., Liu, J.: How to build your network? A structural analysis. arXiv preprint arXiv:1605.03644 (2016)

  20. Moskvina, A., Liu, J.: Integrating networks of equipotent nodes. In: Nguyen, H.T.T., Snasel, V. (eds.) CSoNet 2016. LNCS, vol. 9795, pp. 39–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42345-6_4

    Chapter  Google Scholar 

  21. Moskvina, A., Liu, J.: Togetherness: an algorithmic approach to network integration. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 223–230. IEEE (2016)

    Google Scholar 

  22. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  23. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  24. Tang, Y., Liu, J., Chen, W., Zhang, Z.: Establishing connections in a social network. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS (LNAI), vol. 11012, pp. 1044–1057. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97304-3_80

    Chapter  Google Scholar 

  25. Vitak, J., Ellison, N.B., Steinfield, C.: The ties that bond: re-examining the relationship between Facebook use and bonding social capital. In: 2011 44th Hawaii International Conference on System Sciences, pp. 1–10. IEEE (2011)

    Google Scholar 

  26. Yan, B., Chen, Y., Liu, J.: Dynamic relationship building: exploitation versus exploration on a social network. In: Bouguettaya, A., et al. (eds.) WISE 2017. LNCS, vol. 10569, pp. 75–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68783-4_6

    Chapter  Google Scholar 

  27. Yan, B., Liu, Y., Liu, J., Cai, Y., Su, H., Zheng, H.: From the periphery to the center: information brokerage in an evolving network. arXiv preprint arXiv:1805.00751 (2018)

  28. Zhao, H., Su, H., Chen, Y., Liu, J., Zheng, H., Yan, B.: A reinforcement learning approach to gaining social capital with partial observation. In: Nayak, A.C., Sharma, A. (eds.) PRICAI 2019. LNCS (LNAI), vol. 11670, pp. 113–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29908-8_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S., Liu, J., Liu, Y., Zhang, Z., Khoussainov, B. (2022). Improving Togetherness Using Structural Entropy. In: Deng, S., Zomaya, A., Li, N. (eds) Mobile Computing, Applications, and Services. MobiCASE 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 434. Springer, Cham. https://doi.org/10.1007/978-3-030-99203-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99203-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99202-6

  • Online ISBN: 978-3-030-99203-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics