Best of Both Worlds? Mapping Process Metadata in Digital Humanities and Computational Engineering | SpringerLink
Skip to main content

Best of Both Worlds? Mapping Process Metadata in Digital Humanities and Computational Engineering

  • Conference paper
  • First Online:
Metadata and Semantic Research (MTSR 2021)

Abstract

Process metadata constitute a relevant part of the documentation of research processes and the creation and use of research data. As an addition to publications on the research question, they capture details needed for reusability and comparability and are thus important for a sustainable handling of research data. In the DH project SDC4Lit we want to capture process metadata when researchers work with literary material, conducting manual and automatic processing steps, which need to be treated with equal emphasis. We present a content-related mapping between two process metadata schemas from the area of Digital Humanities (GRAIN, RePlay-DH) and one from Computational Engineering (EngMeta) and find that there are no basic obstacles preventing the use of any of them for our purposes. Actually a basic difference rather exists between GRAIN on the one hand and RePlay-DH and EngMeta on the other, regarding the treatment of tools and actors in a workflow step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Axtmann, A.: Data center 4 science: Disziplinspezifische und disziplinübergreifende Forschungsdateninfrastrukturen und abgestimmte Bearbeitung von Querschnittsthemen in Baden-Württemberg. In: Poster at E-Science-Tage 2021: Share Your Research Data, Heidelberg (2021). https://doi.org/10.11588/heidok.00029607

  2. Blessing, A., et al.: SDC4Lit - a science data center for literature. In: Poster at DH 2020, Ottawa (2020). http://dx.doi.org/10.17613/cyg5-3948

  3. DataCite Metadata Working Group. DataCite Metadata Schema Documentation for the Publication and Citation of Research Data. Version 4.0. (2016). DataCite e.V. http://doi.org/10.5438/0012

  4. Gärtner, M.: RePlay-DH Process Metadata Schema (2019). https://doi.org/10.18419/darus-474

  5. Gärtner, M., Hahn, U., Hermann, S.: Preserving workflow reproducibility: the RePlay-DH client as a tool for process documentation. In: Calzolari, N., et al. (eds.) Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA), Paris (2018)

    Google Scholar 

  6. Jung, K., Gärtner, M., Kuhn, J.: Fine-GRAINed process metadata. In: Garoufallou, E., Fallucchi, F., William De Luca, E. (eds.) MTSR 2019. CCIS, vol. 1057, pp. 373–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36599-8_33

    Chapter  Google Scholar 

  7. King, G.: An introduction to the Dataverse network as an infrastructure for data sharing. Sociol. Methods Res. 36(2), 173–199 (2007). https://doi.org/10.1177/0049124107306660

    Article  MathSciNet  Google Scholar 

  8. Lebo, T., et al.: PROV-O: the PROV ontology. In: W3C Recommendation, World Wide Web Consortium, United States (2013)

    Google Scholar 

  9. Schembera, B.: Like a rainbow in the dark: metadata annotation for HPC applications in the age of dark data. J. Supercomput. 77(8), 8946–8966 (2021). https://doi.org/10.1007/s11227-020-03602-6

    Article  Google Scholar 

  10. Schembera, B., Iglezakis, D.: The genesis of EngMeta - a metadata model for research data in computational engineering. In: Garoufallou, E., Sartori, F., Siatri, R., Zervas, M. (eds.) MTSR 2018. CCIS, vol. 846, pp. 127–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14401-2_12

    Chapter  Google Scholar 

  11. Schembera, B., Iglezakis, D.: EngMeta: metadata for computational engineering. Int. J. Metadata Semant. Ontol. 14(1), 26–38 (2020)

    Article  Google Scholar 

  12. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3(1), 1–9 (2016). https://doi.org/10.1038/sdata.2016.18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jung, K., Schembera, B., Gärtner, M. (2022). Best of Both Worlds? Mapping Process Metadata in Digital Humanities and Computational Engineering. In: Garoufallou, E., Ovalle-Perandones, MA., Vlachidis, A. (eds) Metadata and Semantic Research. MTSR 2021. Communications in Computer and Information Science, vol 1537. Springer, Cham. https://doi.org/10.1007/978-3-030-98876-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98876-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98875-3

  • Online ISBN: 978-3-030-98876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics