Abstract
[Context and motivation] Requirements formalisation facilitates reasoning about inconsistencies, detection of ambiguities, and identification critical issues in system models. Temporal logic formulae are the natural choice when it comes to formalise requirements associated to desired system behaviours. [Question/problem] Understanding and mastering temporal logic requires a formal background. Means are therefore needed to make temporal logic formulae interpretable by engineers, domain experts and other stakeholders involved in the development process. [Principal ideas/results] In this paper, we propose to use a neural machine translation tool, named OpenNMT, to translate Linear Temporal Logic (LTL) formulae into corresponding natural language descriptions. Our results show that the translation system achieves an average BLEU (BiLingual Evaluation Understudy) score of 93.53%, which corresponds to high-quality translations. [Contribution] Our neural model can be applied to assess if requirements have been correctly formalised. This can be useful to requirements analysts, who may have limited confidence with LTL, and to other stakeholders involved in the requirements verification process. Overall, our research preview contributes to bridging the gap between formal methods and requirements engineering, and opens to further research in explainable formal methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, Z., et al.: Bringing LTL model checking to biologists. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 1–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0_1
Al-Thanyyan, S.S., Azmi, A.M.: Automated text simplification: a survey. ACM Comput. Surv. (CSUR) 54(2), 1–36 (2021)
Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(4), 1–64 (2011)
Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering tasks. Empirical Softw. Eng. 26(6) (2021). Article number: 111. https://doi.org/10.1007/s10664-021-09986-0
Brunello, A., Montanari, A., Reynolds, M.: Synthesis of LTL formulas from natural language texts: state of the art and research directions. In: 26th International Symposium on Temporal Representation and Reasoning (TIME 2019) (2019)
Clarke, E., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Checking. Cyber Physical Systems Series. MIT Press, Cambridge (2018)
Czepa, C., Zdun, U.: On the understandability of temporal properties formalized in linear temporal logic, property specification patterns and event processing language. IEEE Trans. Softw. Eng. 46(1), 100–112 (2018)
Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE 1999, pp. 411–420 (1999)
Ferrari, A., ter Beek, M.H.: Formal methods in railways: a systematic mapping study. ACM Comput. Surv. (2022). https://doi.org/10.1145/3520480
Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSENAL: automatic requirements specification extraction from natural language. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 41–46. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0_4
Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Automated formalization of structured natural language requirements. IST 137, 106590 (2021)
Gros, D., Sezhiyan, H., Devanbu, P., Yu, Z.: Code to comment “translation”: data, metrics, baselining & evaluation. In: ASE 2020, pp. 746–757. IEEE (2020)
Gupta, A., Agarwal, A., Singh, P., Rai, P.: A deep generative framework for paraphrase generation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.: OpenNMT: open-source toolkit for neural machine translation. In: ACL 2017, pp. 67–72 (2017)
Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transition systems from goal-oriented requirements models. Autom. Softw. Eng. 15(2), 175–206 (2008). https://doi.org/10.1007/s10515-008-0027-7
Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements syntax (EARS). In: 2009 17th IEEE International Requirements Engineering Conference, pp. 317–322. IEEE (2009)
Menghi, C., Spoletini, P., Chechik, M., Ghezzi, C.: Supporting verification-driven incremental distributed design of components. In: Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 169–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89363-1_10
Nikora, A.P., Balcom, G.: Automated identification of LTL patterns in natural language requirements. In: ISSRE 2009, pp. 185–194. IEEE (2009)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: ACL 2002, pp. 311–318 (2002)
Siddharthan, A.: A survey of research on text simplification. ITL-Int. J. Appl. Linguist. 165(2), 259–298 (2014)
Van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements engineering. IEEE Trans. Softw. Eng. 26(10), 978–1005 (2000)
Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8
Zhao, L., et al.: Natural language processing for requirements engineering: a systematic mapping study. ACM Comput. Surv. (CSUR) 54(3), 1–41 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Cherukuri, H., Ferrari, A., Spoletini, P. (2022). Towards Explainable Formal Methods: From LTL to Natural Language with Neural Machine Translation. In: Gervasi, V., Vogelsang, A. (eds) Requirements Engineering: Foundation for Software Quality. REFSQ 2022. Lecture Notes in Computer Science, vol 13216. Springer, Cham. https://doi.org/10.1007/978-3-030-98464-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-98464-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98463-2
Online ISBN: 978-3-030-98464-9
eBook Packages: Computer ScienceComputer Science (R0)