Abstract
Risk assessment techniques, in particular Survival Analysis, are crucial to provide personalised treatment to Head and Neck (H&N) cancer patients. These techniques usually rely on accurate segmentation of the Gross Tumour Volume (GTV) region in Computed Tomography (CT) and Positron Emission Tomography (PET) images . This is a challenging task due to the low contrast in CT and lack of anatomical information in PET. Recent approaches based on Convolutional Neural Networks (CNNs) have demonstrated automatic 3D segmentation of the GTV, albeit with high memory footprints (\({\ge }10\) GB/epoch). In this work, we propose an efficient solution (\({\sim }3\) GB/epoch) for the segmentation task in the HECKTOR 2021 challenge. We achieve this by combining the Simple Linear Iterative Clustering (SLIC) algorithm with Graph Convolution Networks to segment the GTV, resulting in a Dice score of 0.63 on the challenge test set. Furthermore, we demonstrate how shape descriptors of the resulting segmentations are relevant covariates in the Weibull Accelerated Failure Time model, which results in a Concordance Index of 0.59 for task 2 in the HECKTOR 2021 challenge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chajon, E., et al.: Salivary gland-sparing other than parotid-sparing in definitive head-and-neck intensity-modulated radiotherapy does not seem to jeopardize local control. Radiat. Oncol. 8(1), 1–9 (2013)
Castelli, J., et al.: A PET-based nomogram for oropharyngeal cancers. Eur. J. Cancer 75, 222–230 (2017)
Bogowicz, M., et al.: Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma. Acta Oncol. 56(11), 1531–1536 (2017)
Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2020: automatic head and neck tumor segmentation in PET/CT. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 1–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_1
Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) HECKTOR 2021. LNCS, vol. 13209, pp. 1–37. Springer, Cham (2022)
Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2021)
Ronneberger, O., et al.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)
Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data. Wiley, New York (1980)
Achanta, R., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations (2017)
He, K., et al.: Deep residual learning for image recognition. In: 29th IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Ioffe, S., et al.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)
Iantsen, A., Visvikis, D., Hatt, M.: Squeeze-and-excitation normalization for automated delineation of head and neck primary tumors in combined PET and CT images. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 37–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_4
Milletari, F., et al.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 4th International Conference on 3D Vision, pp. 565–571 (2016)
Lin, T., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988. (2017)
Eisenhauer, E.A., et al.: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45(2), 228–247 (2009)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (2015)
Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: 5th International Conference on Learning Representations (2017)
Davidson-Pilon, C.: Lifelines: survival analysis in Python. J. Open Source Softw. 4(40), 1317 (2019). https://doi.org/10.21105/joss.01317 (2019)
van der Walt, S., et al.: scikit-image: image processing in Python. J. PeerJ 2, e453 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Juanco-Müller, Á.V., Mota, J.F.C., Goatman, K., Hoogendoorn, C. (2022). Deep Supervoxel Segmentation for Survival Analysis in Head and Neck Cancer Patients. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2021. Lecture Notes in Computer Science, vol 13209. Springer, Cham. https://doi.org/10.1007/978-3-030-98253-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-98253-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98252-2
Online ISBN: 978-3-030-98253-9
eBook Packages: Computer ScienceComputer Science (R0)