Deep Supervoxel Segmentation for Survival Analysis in Head and Neck Cancer Patients | SpringerLink
Skip to main content

Deep Supervoxel Segmentation for Survival Analysis in Head and Neck Cancer Patients

  • Conference paper
  • First Online:
Head and Neck Tumor Segmentation and Outcome Prediction (HECKTOR 2021)

Abstract

Risk assessment techniques, in particular Survival Analysis, are crucial to provide personalised treatment to Head and Neck (H&N) cancer patients. These techniques usually rely on accurate segmentation of the Gross Tumour Volume (GTV) region in Computed Tomography (CT) and Positron Emission Tomography (PET) images . This is a challenging task due to the low contrast in CT and lack of anatomical information in PET. Recent approaches based on Convolutional Neural Networks (CNNs) have demonstrated automatic 3D segmentation of the GTV, albeit with high memory footprints (\({\ge }10\) GB/epoch). In this work, we propose an efficient solution (\({\sim }3\) GB/epoch) for the segmentation task in the HECKTOR 2021 challenge. We achieve this by combining the Simple Linear Iterative Clustering (SLIC) algorithm with Graph Convolution Networks to segment the GTV, resulting in a Dice score of 0.63 on the challenge test set. Furthermore, we demonstrate how shape descriptors of the resulting segmentations are relevant covariates in the Weibull Accelerated Failure Time model, which results in a Concordance Index of 0.59 for task 2 in the HECKTOR 2021 challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chajon, E., et al.: Salivary gland-sparing other than parotid-sparing in definitive head-and-neck intensity-modulated radiotherapy does not seem to jeopardize local control. Radiat. Oncol. 8(1), 1–9 (2013)

    Article  Google Scholar 

  2. Castelli, J., et al.: A PET-based nomogram for oropharyngeal cancers. Eur. J. Cancer 75, 222–230 (2017)

    Article  Google Scholar 

  3. Bogowicz, M., et al.: Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma. Acta Oncol. 56(11), 1531–1536 (2017)

    Article  Google Scholar 

  4. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2020: automatic head and neck tumor segmentation in PET/CT. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 1–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_1

    Chapter  Google Scholar 

  5. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) HECKTOR 2021. LNCS, vol. 13209, pp. 1–37. Springer, Cham (2022)

    Google Scholar 

  6. Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2021)

    Article  Google Scholar 

  7. Ronneberger, O., et al.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  8. Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data. Wiley, New York (1980)

    MATH  Google Scholar 

  9. Achanta, R., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  11. He, K., et al.: Deep residual learning for image recognition. In: 29th IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Ioffe, S., et al.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  13. Iantsen, A., Visvikis, D., Hatt, M.: Squeeze-and-excitation normalization for automated delineation of head and neck primary tumors in combined PET and CT images. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 37–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_4

    Chapter  Google Scholar 

  14. Milletari, F., et al.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 4th International Conference on 3D Vision, pp. 565–571 (2016)

    Google Scholar 

  15. Lin, T., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988. (2017)

    Google Scholar 

  16. Eisenhauer, E.A., et al.: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45(2), 228–247 (2009)

    Article  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  18. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  19. Davidson-Pilon, C.: Lifelines: survival analysis in Python. J. Open Source Softw. 4(40), 1317 (2019). https://doi.org/10.21105/joss.01317 (2019)

  20. van der Walt, S., et al.: scikit-image: image processing in Python. J. PeerJ 2, e453 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Víctor Juanco-Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Juanco-Müller, Á.V., Mota, J.F.C., Goatman, K., Hoogendoorn, C. (2022). Deep Supervoxel Segmentation for Survival Analysis in Head and Neck Cancer Patients. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2021. Lecture Notes in Computer Science, vol 13209. Springer, Cham. https://doi.org/10.1007/978-3-030-98253-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98253-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98252-2

  • Online ISBN: 978-3-030-98253-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics