Abstract
Artificial Neural Networks (ANNs) are dominant machine learning tools over the last two decades and are part of almost every computational intelligence task. ANNs have several parameters such as number of hidden layers, number of hidden neurons in each layer, variations in inter-connections between them, etc. Proposing an appropriate architecture for a particular problem while considering all parametric terms is an extensive and significant task. Metaheuristic approaches like particle swarm optimization, ant colony optimization, and cuckoo search algorithm have large contributions in the field of optimization. The main objective of this work is to design a new method that can help in the optimization of ANN architecture. This work takes advantage of the Bat algorithm and combines it with an ANN to find optimal architecture with minimal testing error. The proposed methodology had been tested on two different benchmark datasets and demonstrated results better than other similar methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gorin, L., Mammone, R.J.: Introduction to the special issue on neural networks for speech processing. IEEE Trans. Speech Audio Process. 2(1), 113–114 (1994). https://doi.org/10.1109/89.260355
Hwang, J.N., Kung, S.Y., Niranjan, M., Principe, J.C.: The past, present, and future of neural networks for signal processing: the neural networks for signal processing technical committee. IEEE Signal Process. Mag. 14(6), 28–48 (1997). https://doi.org/10.1109/79.637299
Jain, A.K., Duin, P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000). https://doi.org/10.1109/34.824819
Zhang, G.P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 30(4), 451–462 (2000). https://doi.org/10.1109/5326.897072
Lam, H.K., Leung, F.H.F.: Design and stabilization of sampled-data neural-network-based control systems. In: Proceedings of the International Joint Conference on Neural Networks, vol. 4 (2005). https://doi.org/10.1109/IJCNN.2005.1556251
Raza, K., Alam, M.: Recurrent neural network based hybrid model for reconstructing gene regulatory network. Comput. Biol. Chem. 64, 322–334 (2016). https://doi.org/10.1016/j.compbiolchem.2016.08.002
Selmic, R.R., Lewis, F.L.: Neural-network approximation of piecewise continuous functions: application to friction compensation. IEEE Trans. Neural Netw. 13(3), 745–751 (2002). https://doi.org/10.1109/TNN.2002.1000141
Raza, K., Hasan, A.N.: A comprehensive evaluation of machine learning techniques for cancer class prediction based on microarray data. IJBRA 11(5), 397 (2015). https://doi.org/10.1504/IJBRA.2015.071940
Raza, K., Singh, N.K.: A tour of unsupervised deep learning for medical image analysis. CMIR 17(9), 1059–1077 (2021). https://doi.org/10.2174/1573405617666210127154257
Stepniewski, S.W., Keane, A.J.: Pruning backpropagation neural networks using modern stochastic optimisation techniques. Neural Comput. Appl. 5(2), 76–98 (1997). https://doi.org/10.1007/BF01501173
Ludermir, T.B., Yamazaki, A., Zanchettin, C.: An optimization methodology for neural network weights and architectures. IEEE Trans. Neural Netw. 17(6), 1452–1459 (2006). https://doi.org/10.1109/TNN.2006.881047
Gepperth, A., Roth, S.: Applications of multi-objective structure optimization. Neurocomputing 69(7–9), 701–713 (2006). https://doi.org/10.1016/j.neucom.2005.12.017
Tsai, J.T., Chou, J.H., Liu, T.K.: Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans. Neural Netw. 17(1), 69–80 (2006). https://doi.org/10.1109/TNN.2005.860885
Huang, D.S., Du, J.X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19(12), 2099–2115 (2008). https://doi.org/10.1109/TNN.2008.2004370
Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: the Bayesian optimization algorithm 1 introduction. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, vol. 1 (1999)
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, vol. 4 (2012)
Zhou, Y., Jun, Y., Xiang, C., Fan, J., Tao, D.: Beyond bilinear: generalized multimodal factorized high-order pooling for visual question answering. IEEE Trans. Neural Netw. Learning Syst. 29(12), 5947–5959 (2018). https://doi.org/10.1109/TNNLS.2018.2817340
Yu, Z., Yu, J., Cui, Y., Tao, D., Tian, Q.: Deep modular co-attention networks for visual question answering. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2019 (2019). https://doi.org/10.1109/CVPR.2019.00644
Yu, Z., et al.: ActivityNet-QA: a dataset for understanding complex web videos via question answering (2019). https://doi.org/10.1609/aaai.v33i01.33019127
Zanchettin, C., Ludermir, T.B., Almeida, L.M.I.: Hybrid training method for MLP: optimization of architecture and training. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(4), 1097–1109 (2011). https://doi.org/10.1109/TSMCB.2011.2107035
Yu, J., Tan, M., Zhang, H., Tao, D., Rui, Y.: Hierarchical deep click feature prediction for fine-grained image recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2019). https://doi.org/10.1109/tpami.2019.2932058
Zhang, J., Yu, J., Tao, D.: Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans. Image Process. 27(5), 2420–2432 (2018). https://doi.org/10.1109/TIP.2018.2804218
Jaddi, N.S., Abdullah, S., Hamdan, A.R.: Optimization of neural network model using modified bat-inspired algorithm. Appl. Soft Comput. J. 37, 71–86 (2015). https://doi.org/10.1016/j.asoc.2015.08.002
Jaddi, N.S., Abdullah, S., Hamdan, A.R.: A solution representation of genetic algorithm for neural network weights and structure. Inf. Process. Lett. 116(1), 22–25 (2016). https://doi.org/10.1016/j.ipl.2015.08.001
Sindhwani, N., Singh, M.: Performance analysis of ant colony based optimization algorithm in MIMO systems (2018). https://doi.org/10.1109/wispnet.2017.8300029
Sindhwani, N., Bhamrah, M.S., Garg, A., Kumar, D.: Performance analysis of particle swarm optimization and genetic algorithm in MIMO systems (2017). https://doi.org/10.1109/ICCCNT.2017.8203962
Gupta, T.K., Raza, K.: Optimizing deep feedforward neural network architecture: a tabu search based approach. Neural Process. Lett. 51(3), 2855–2870 (2020). https://doi.org/10.1007/s11063-020-10234-7
Gupta, T.K., Raza, K.: Optimization of ANN architecture: a review on nature-inspired techniques. Mach. Learn. Bio-Signal Anal. Diagn. Imaging (2019). https://doi.org/10.1016/b978-0-12-816086-2.00007-2
Yang, X.S.: A new metaheuristic Bat-inspired Algorithm. In: Studies in Computational Intelligence, vol. 284 (2010). https://doi.org/10.1007/978-3-642-12538-6_6
Li, Y., Fu, Y., Zhang, S.W., Li, H.: Improved algorithm of the back propagation neural network and its application in fault diagnosis of air-cooling condenser (2009). https://doi.org/10.1109/ICWAPR.2009.5207438
Dua, D., Graff, C.: UCI Machine Learning Repository: Data Sets. School of Information and Computer Science, University of California, Irvine (2019)
Rodriguez-Lujan, I., Fonollosa, J., Vergara, A., Homer, M., Huerta, R.: On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemometrics Intell. Lab. Syst. 130, 123–134 (2014). https://doi.org/10.1016/j.chemolab.2013.10.012
Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B: Chem. 166–167, 320–329 (2012). https://doi.org/10.1016/j.snb.2012.01.074
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Python code will be uploaded to Github after the acceptance of the paper.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gupta, T.K., Raza, K. (2022). Optimization of Artificial Neural Network: A Bat Algorithm-Based Approach. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP., Nogueira Rios, T., Ding, W. (eds) Intelligent Systems Design and Applications. ISDA 2021. Lecture Notes in Networks and Systems, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-96308-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-96308-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96307-1
Online ISBN: 978-3-030-96308-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)