Optimization of Artificial Neural Network: A Bat Algorithm-Based Approach | SpringerLink
Skip to main content

Optimization of Artificial Neural Network: A Bat Algorithm-Based Approach

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2021)

Abstract

Artificial Neural Networks (ANNs) are dominant machine learning tools over the last two decades and are part of almost every computational intelligence task. ANNs have several parameters such as number of hidden layers, number of hidden neurons in each layer, variations in inter-connections between them, etc. Proposing an appropriate architecture for a particular problem while considering all parametric terms is an extensive and significant task. Metaheuristic approaches like particle swarm optimization, ant colony optimization, and cuckoo search algorithm have large contributions in the field of optimization. The main objective of this work is to design a new method that can help in the optimization of ANN architecture. This work takes advantage of the Bat algorithm and combines it with an ANN to find optimal architecture with minimal testing error. The proposed methodology had been tested on two different benchmark datasets and demonstrated results better than other similar methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gorin, L., Mammone, R.J.: Introduction to the special issue on neural networks for speech processing. IEEE Trans. Speech Audio Process. 2(1), 113–114 (1994). https://doi.org/10.1109/89.260355

    Article  Google Scholar 

  2. Hwang, J.N., Kung, S.Y., Niranjan, M., Principe, J.C.: The past, present, and future of neural networks for signal processing: the neural networks for signal processing technical committee. IEEE Signal Process. Mag. 14(6), 28–48 (1997). https://doi.org/10.1109/79.637299

  3. Jain, A.K., Duin, P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000). https://doi.org/10.1109/34.824819

    Article  Google Scholar 

  4. Zhang, G.P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 30(4), 451–462 (2000). https://doi.org/10.1109/5326.897072

    Article  Google Scholar 

  5. Lam, H.K., Leung, F.H.F.: Design and stabilization of sampled-data neural-network-based control systems. In: Proceedings of the International Joint Conference on Neural Networks, vol. 4 (2005). https://doi.org/10.1109/IJCNN.2005.1556251

  6. Raza, K., Alam, M.: Recurrent neural network based hybrid model for reconstructing gene regulatory network. Comput. Biol. Chem. 64, 322–334 (2016). https://doi.org/10.1016/j.compbiolchem.2016.08.002

    Article  Google Scholar 

  7. Selmic, R.R., Lewis, F.L.: Neural-network approximation of piecewise continuous functions: application to friction compensation. IEEE Trans. Neural Netw. 13(3), 745–751 (2002). https://doi.org/10.1109/TNN.2002.1000141

    Article  Google Scholar 

  8. Raza, K., Hasan, A.N.: A comprehensive evaluation of machine learning techniques for cancer class prediction based on microarray data. IJBRA 11(5), 397 (2015). https://doi.org/10.1504/IJBRA.2015.071940

    Article  Google Scholar 

  9. Raza, K., Singh, N.K.: A tour of unsupervised deep learning for medical image analysis. CMIR 17(9), 1059–1077 (2021). https://doi.org/10.2174/1573405617666210127154257

    Article  Google Scholar 

  10. Stepniewski, S.W., Keane, A.J.: Pruning backpropagation neural networks using modern stochastic optimisation techniques. Neural Comput. Appl. 5(2), 76–98 (1997). https://doi.org/10.1007/BF01501173

    Article  Google Scholar 

  11. Ludermir, T.B., Yamazaki, A., Zanchettin, C.: An optimization methodology for neural network weights and architectures. IEEE Trans. Neural Netw. 17(6), 1452–1459 (2006). https://doi.org/10.1109/TNN.2006.881047

    Article  Google Scholar 

  12. Gepperth, A., Roth, S.: Applications of multi-objective structure optimization. Neurocomputing 69(7–9), 701–713 (2006). https://doi.org/10.1016/j.neucom.2005.12.017

    Article  Google Scholar 

  13. Tsai, J.T., Chou, J.H., Liu, T.K.: Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans. Neural Netw. 17(1), 69–80 (2006). https://doi.org/10.1109/TNN.2005.860885

    Article  Google Scholar 

  14. Huang, D.S., Du, J.X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19(12), 2099–2115 (2008). https://doi.org/10.1109/TNN.2008.2004370

    Article  Google Scholar 

  15. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: the Bayesian optimization algorithm 1 introduction. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, vol. 1 (1999)

    Google Scholar 

  16. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, vol. 4 (2012)

    Google Scholar 

  17. Zhou, Y., Jun, Y., Xiang, C., Fan, J., Tao, D.: Beyond bilinear: generalized multimodal factorized high-order pooling for visual question answering. IEEE Trans. Neural Netw. Learning Syst. 29(12), 5947–5959 (2018). https://doi.org/10.1109/TNNLS.2018.2817340

    Article  Google Scholar 

  18. Yu, Z., Yu, J., Cui, Y., Tao, D., Tian, Q.: Deep modular co-attention networks for visual question answering. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2019 (2019). https://doi.org/10.1109/CVPR.2019.00644

  19. Yu, Z., et al.: ActivityNet-QA: a dataset for understanding complex web videos via question answering (2019). https://doi.org/10.1609/aaai.v33i01.33019127

  20. Zanchettin, C., Ludermir, T.B., Almeida, L.M.I.: Hybrid training method for MLP: optimization of architecture and training. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(4), 1097–1109 (2011). https://doi.org/10.1109/TSMCB.2011.2107035

    Article  Google Scholar 

  21. Yu, J., Tan, M., Zhang, H., Tao, D., Rui, Y.: Hierarchical deep click feature prediction for fine-grained image recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2019). https://doi.org/10.1109/tpami.2019.2932058

    Article  Google Scholar 

  22. Zhang, J., Yu, J., Tao, D.: Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans. Image Process. 27(5), 2420–2432 (2018). https://doi.org/10.1109/TIP.2018.2804218

    Article  MathSciNet  MATH  Google Scholar 

  23. Jaddi, N.S., Abdullah, S., Hamdan, A.R.: Optimization of neural network model using modified bat-inspired algorithm. Appl. Soft Comput. J. 37, 71–86 (2015). https://doi.org/10.1016/j.asoc.2015.08.002

    Article  Google Scholar 

  24. Jaddi, N.S., Abdullah, S., Hamdan, A.R.: A solution representation of genetic algorithm for neural network weights and structure. Inf. Process. Lett. 116(1), 22–25 (2016). https://doi.org/10.1016/j.ipl.2015.08.001

    Article  Google Scholar 

  25. Sindhwani, N., Singh, M.: Performance analysis of ant colony based optimization algorithm in MIMO systems (2018). https://doi.org/10.1109/wispnet.2017.8300029

  26. Sindhwani, N., Bhamrah, M.S., Garg, A., Kumar, D.: Performance analysis of particle swarm optimization and genetic algorithm in MIMO systems (2017). https://doi.org/10.1109/ICCCNT.2017.8203962

  27. Gupta, T.K., Raza, K.: Optimizing deep feedforward neural network architecture: a tabu search based approach. Neural Process. Lett. 51(3), 2855–2870 (2020). https://doi.org/10.1007/s11063-020-10234-7

    Article  Google Scholar 

  28. Gupta, T.K., Raza, K.: Optimization of ANN architecture: a review on nature-inspired techniques. Mach. Learn. Bio-Signal Anal. Diagn. Imaging (2019). https://doi.org/10.1016/b978-0-12-816086-2.00007-2

    Article  Google Scholar 

  29. Yang, X.S.: A new metaheuristic Bat-inspired Algorithm. In: Studies in Computational Intelligence, vol. 284 (2010). https://doi.org/10.1007/978-3-642-12538-6_6

  30. Li, Y., Fu, Y., Zhang, S.W., Li, H.: Improved algorithm of the back propagation neural network and its application in fault diagnosis of air-cooling condenser (2009). https://doi.org/10.1109/ICWAPR.2009.5207438

  31. Dua, D., Graff, C.: UCI Machine Learning Repository: Data Sets. School of Information and Computer Science, University of California, Irvine (2019)

    Google Scholar 

  32. Rodriguez-Lujan, I., Fonollosa, J., Vergara, A., Homer, M., Huerta, R.: On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemometrics Intell. Lab. Syst. 130, 123–134 (2014). https://doi.org/10.1016/j.chemolab.2013.10.012

    Article  Google Scholar 

  33. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B: Chem. 166–167, 320–329 (2012). https://doi.org/10.1016/j.snb.2012.01.074

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Raza .

Editor information

Editors and Affiliations

Ethics declarations

Python code will be uploaded to Github after the acceptance of the paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, T.K., Raza, K. (2022). Optimization of Artificial Neural Network: A Bat Algorithm-Based Approach. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP., Nogueira Rios, T., Ding, W. (eds) Intelligent Systems Design and Applications. ISDA 2021. Lecture Notes in Networks and Systems, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-96308-8_26

Download citation

Publish with us

Policies and ethics