Abstract
The emphasis of this article is on the data-driven diagnosis of polycystic ovary syndrome (PCOS) in women. Data from the Kaggle repository is used to train ensemble machine learning algorithms. There are 177 women with PCOS in this dataset, which includes 43 different characteristics. To begin, a univariate feature selection and feature elimination method are used to identify the most accurate characteristics for predicting PCOS. The characteristics are ranked, and the ratio of Follicle-stimulating hormone (FSH) to Luteinizing hormone (LH) is determined to be the most significant one. Cross-validation method is applied while the feature selection and feature elimination are occurring. Voting hard, voting soft and CatBoost are among the classifiers used on the dataset. According to the findings, the top 13 most significant risk factors accurately predict the onset of PCOS. With the use of 5, 10, 20-fold cross-validation on ensemble learning’s 13 most critical characteristics, results show that soft voting has the highest accuracy of 91.12%. As a result, ensemble learning can be used to accurately identify PCOS patients.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hiremath, P.S., Tegnoor, J.R.: Follicle detection and ovarian classification in digital ultrasound images of ovaries. Adv. Breakthroughs Ultrasound Imag. 5, 167–199 (2013)
Balen, A.H., Laven, J.S.E., Tan, S.L., Dewailly, D.: Ultrasound assessment of the polycystic ovary: international consensus definitions. Hum. Reprod. Update 9(6), 505–514 (2003)
Pache, T.D., Wladimiroff, J.W., Hop, W.C., Fauser, B.C.: How to discriminate between normal and polycystic ovaries: transvaginal US study. Radiology 183(2), 421–423 (1992)
Kelsey, T.W., Wallace, W.H.B.: Ovarian volume correlates strongly with the number of nongrowing follicles in the human ovary. In: Obstetrics and Gynecology International 2012 (2012)
Priya, N., Jeevitha, S.: Overview of an ovarian classification and detection PCOS in ultrasound image: a study. In: Jain, L.C., Peng, S.-L., Alhadidi, B., Pal, S. (eds.) ICICCT 2019. LAIS, vol. 9, pp. 359–365. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38501-9_36
Obermayer-Pietsch, B., Lerchbaum, E.: Journal für Klinische Endokrinologie und Stoffwechsel 12(4), 170–173 (2019). https://doi.org/10.1007/s41969-019-00084-7
Dumesic, D.A., Oberfield, S.E., Stener-Victorin, E., Marshall, J.C., Laven, J.S., Legro, R.S.: Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr. Rev. 36(5), 487–525 (2015)
Cheng, J.J., Mahalingaiah, S.: Data mining and classification of polycystic ovaries in pelvic ultrasound reports. bioRxiv:254870 (2018)
Padmapriya, B., Kesavamurthy, T.: Detection of follicles in poly cystic ovarian syndrome in ultrasound images using morphological operations. J. Med. Imag. Health Inf. 6(1), 240–243 (2016)
Gibson-Helm, M., Teede, H., Dunaif, A., Dokras, A.: Delayed diagnosis and a lack of information associated with dissatisfaction in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 102(2), 604–612 (2017)
Mehrotra, P., Chatterjee, J., Chakraborty, C., Ghoshdastidar, B., Ghoshdastidar, S.: Automated screening of polycystic ovary syndrome using machine learning techniques. In: Paper Presented at the 2011 Annual IEEE India Conference, 2011 (2011)
Bharati, S., Podder, P., Mondal, M.R.H.: Diagnosis of Polycystic Ovary Syndrome Using Machine Learning Algorithms. In: 2020 IEEE, pp 1486–1489 (2020)
Mahmood, N.H., Ahmmad, S.N.Z., Hashim, H., Rani, S.: Ovary ultrasound image edge detection analysis: a tutorial using MATLAB. Int. J. Eng. Res. Appl. 2(3), 1635–1642 (2012)
Vasavi, G., Jyothi, S.: Classification and detection of ovarian cysts in ultrasound Images. In: Paper presented at the 2017 International Conference on Trends in Electronics and Informatics (ICEI), 2017 (2017)
Padmapriya, B., Kesavamurthy, T.: Diagnostic tool for PCOS classification. In: Goh, J., Lim, C.T. (eds.) 7th WACBE World Congress on Bioengineering 2015. IP, vol. 52, pp. 182–185. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19452-3_48
Brower, M., Brennan, K., Pall, M., Azziz, R.: The severity of menstrual dysfunction as a predictor of insulin resistance in PCOS. J. Clin. Endocrinol. Metab. 98(12), E1967–E1971 (2013)
Dewailly, D., et al.: Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum. Reprod. Update 20(3), 334–352 (2014)
Raj, A.: Detection of cysts in ultrasonic images of ovary. Int. J. Sci. Res. (IJSR) 2(8), 185–189 (2013)
Dewi, R.M., Adiwijaya, U.N., Wisesty, J.: Classification of polycystic ovary based on ultrasound images using competitive neural network. J. Phys. Conf. Ser. 971, 012005 (2018). https://doi.org/10.1088/1742-6596/971/1/012005
Bharati, S., Podder, P., Mondal, M.R.H.: Artificial neural network based breast cancer screening: a comprehensive review. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 12, 125–137 (2020)
Bharati, S., Podder, P., Mondal, M., Prasath, V.B.: CO-ResNet: optimized ResNet model for COVID-19 diagnosis from X-ray images. Int. J. Hybrid Intell. Syst. 17, 71–85 (2021). https://doi.org/10.3233/HIS-210008
Bharati, S., Podder, P., Mondal, M., Prasath, V.B.: Medical imaging with deep learning for COVID-19 diagnosis: a comprehensive review. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 13, 91–112 (2021)
Bharati, S., Prajoy Podder, M., Mondal, R.H., Gandhi, N.: Optimized NASNet for diagnosis of COVID-19 from lung CT images. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds.) ISDA 2020. AISC, vol. 1351, pp. 647–656. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71187-0_59
Bharati, S., Prajoy Podder, M., Mondal, R.H.: Hybrid deep learning for detecting lung diseases from X-ray images. Inf. Med. Unlocked 20, 100391 (2020)
Sachdeva, G., Gainder, S., Suri, V., Sachdeva, N., Chopra, S.: Obese and non-obese polycystic ovarian syndrome: comparison of clinical, metabolic, hormonal parameters, and their differential response to clomiphene. Indian J. Endocrinol. Metabol. 23(2), 257 (2019)
Mondal, M.R.H., Bharati, S., Podder, P.: CO-IRv2: Optimized InceptionResNetV2 for COVID-19 detection from chest CT images. PLoS ONE 16(10), e0259179 (2021)
Zhang, X.-Z., Pang, Y.-L., Wang, X., Li, Y.-H.: Computational characterization and identification of human polycystic ovary syndrome genes. Sci. Rep. 8(1), 1–7 (2018)
Denny, A., Raj, A., Ashok, A., Ram, C.M.: George R I-HOPE: detection and prediction system for polycystic ovary syndrome (PCOS) using machine learning techniques. In: TENCON 2019–2019 IEEE Region 10 Conference (TENCON), 2019, pp 673–678. IEEE (2019)
Joham, A.E., Teede, H.J., Ranasinha, S., Zoungas, S., Boyle, J.: Prevalence of infertility and use of fertility treatment in women with polycystic ovary syndrome: data from a large community-based cohort study. J. Womens Health 24(4), 299–307 (2015)
Kottarathil, P.: Polycystic ovary syndrome (PCOS). https://www.kaggle.com/prasoonkottarathil/polycystic-ovary-syndrome-pcos. Accessed 18 Nov 2021
Podder, P., Khamparia, A., Mondal, M.R.H., Rahman, M.A., Bharati, S.: Forecasting the Spread of COVID-19 and ICU Requirements. Int. J, Online Biomed. Eng. (iJOE) 5, 81–99 (2021)
Mondal, M.R.H., Bharati, S., Podder, P.: Diagnosis of COVID-19 using machine learning and deep learning: a review. In: Current Medical Imaging (2021)
Raihan-Al-Masud, M., Mondal, M.R.H.: Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms. PLoS ONE 15(2), e0228422 (2020)
Podder, P., Subrato Bharati, M., Mondal, R.H., Kose, U.: Application of machine learning for the diagnosis of COVID-19. In: Data Science for COVID-19, pp. 175–194. Elsevier (2021). https://doi.org/10.1016/B978-0-12-824536-1.00008-3
Podder, P., Subrato Bharati, M., Mondal, R.H.: 10 Automated gastric cancer detection and classification using machine learning. In: Gupta, D., Kose, U., Le Nguyen, B., Bhattacharyya, S. (eds.) Artificial Intelligence for Data-Driven Medical Diagnosis, pp. 207–224. De Gruyter (2021). https://doi.org/10.1515/9783110668322-010
Mondal, M.R.H., Bharati, S., Podder, P., Podder, P.: Data analytics for novel coronavirus disease. Inf. Med. Unlocked 20, 100374 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bharati, S., Podder, P., Mondal, M.R.H., Surya Prasath, V.B., Gandhi, N. (2022). Ensemble Learning for Data-Driven Diagnosis of Polycystic Ovary Syndrome. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP., Nogueira Rios, T., Ding, W. (eds) Intelligent Systems Design and Applications. ISDA 2021. Lecture Notes in Networks and Systems, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-96308-8_116
Download citation
DOI: https://doi.org/10.1007/978-3-030-96308-8_116
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96307-1
Online ISBN: 978-3-030-96308-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)