Abstract
Machine-learning classifiers provide high quality of service in classification tasks. Research now targets cost reduction measured in terms of average processing time or energy per solution. Revisiting the concept of cascaded classifiers, we present a first of its kind analysis of optimal pass-on criteria between the classifier stages. Based on this analysis, we derive a methodology to maximize accuracy and efficiency of cascaded classifiers. On the one hand, our methodology allows cost reduction of 1.32\(\times \) while preserving reference classifier’s accuracy. On the other hand, it allows to scale cost over two orders while gracefully degrading accuracy. Thereby, the final classifier stage sets the top accuracy. Hence, the multi-stage realization can be employed to optimize any state-of-the-art classifier.
C. Latotzke and J. Loh—Contribute equally to the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that the width and depth of the ANNs used for this case study are adjusted for the CIFAR 10 dataset.
References
ImageNet. https://www.image-net.org/. Accessed 01 Feb 2021
Badami, K., Lauwereins, S., Meert, W., Verhelst, M.: Context-aware hierarchical information-sensing in a 6\(\upmu \)W 90nm CMOS voice activity detector. In: ISSCC, vol. 58, pp. 430–432 (2015). https://doi.org/10.1109/ISSCC.2015.7063110
Benbasat, A.Y., Paradiso, J.A.: A framework for the automated generation of power-efficient classifiers for embedded sensor nodes. In: SenSys, vol. 5, pp. 219–232 (2007). https://doi.org/10.1145/1322263.1322285
Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in Science Conference, vol. 13, pp. 13–19 (2013)
Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. CoRR, abs/1605.07678 (2017)
Cocaña-Fernández, A., Ranilla, J., Gil-Pita, R., Sánchez, L.: Energy-conscious fuzzy rule-based classifiers for battery operated embedded devices. In: FUZZ-IEEE, pp. 1–6 (2017). https://doi.org/10.1109/FUZZ-IEEE.2017.8015483
Courbariaux, M., Bengio, Y.: BinaryNet: training deep neural networks with weights and activations constrained to +1 or -1. CoRR, abs/1602.02830 (2016)
Goens, A., Brauckmann, A., Ertel, S., Cummins, C., Leather, H., Castrillon, J.: A case study on machine learning for synthesizing benchmarks. In: MAPL, pp. 38–46 (2019). https://doi.org/10.1145/3315508.3329976
Goetschalckx, K., Moons, B., Lauwereins, S., Andraud, M., Verhelst, M.: Optimized hierarchical cascaded processing. JETCAS 8, 884–894 (2018). https://doi.org/10.1109/JETCAS.2018.2839347
Horowitz, M.: 1.1 Computing’s energy problem (and what we can do about it). In: ISSCC, pp. 10–14 (2014). https://doi.org/10.1109/ISSCC.2014.6757323
Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 2261–2269 (2016). https://doi.org/10.1109/CVPR.2017.243
Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: CVPR, pp. 2372–2379 (2009). https://doi.org/10.1109/CVPR.2009.5206627
Kouris, A., Venieris, S.I., Bouganis, C.: Cascade CNN: pushing the performance limits of quantisation in convolutional neural networks. In: FPL, pp. 155–1557 (2018). https://doi.org/10.1109/FPL.2018.00034
Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian Institute for Advanced Research). http://www.cs.toronto.edu/~kriz/cifar.html
Latotzke, C., Gemmeke, T.: Efficiency versus accuracy: a review of design techniques for DNN hardware accelerators. IEEE Access 9, 9785–9799 (2021). https://doi.org/10.1109/ACCESS.2021.3050670
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Lecun, Y., Cortes, C., Burges, C.: The MNIST Database of handwritten digits. http://yann.lecun.com/exdb/mnist/
Li, L., Topkara, U., Coskun, B., Memon, N.: CoCoST: a computational cost efficient classifier. In: ICDM, pp. 268–277 (2009). https://doi.org/10.1109/ICDM.2009.46
Lin, Z., Memisevic, R., Konda, K.R.: How far can we go without convolution: improving fully-connected networks. CoRR, abs/1511.02580 (2015)
Ouali, M., King, R.D.: Cascaded multiple classifiers for secondary structure prediction. Protein Sci., 1162–1176 (2000). https://doi.org/10.1110/ps.9.6.1162
Price, M., Glass, J., Chandrakasan, A.P.: A scalable speech recognizer with deep-neural-network acoustic models and voice-activated power gating. In: ISSCC, pp. 244–245 (2017). https://doi.org/10.1109/ISSCC.2017.7870352
Rossi, D., et al.: 4.4 A 1.3TOPS/W @ 32GOPS fully integrated 10-core SoC for IoT end-nodes with 1.7\(\upmu \)W cognitive wake-up from MRAM-based state-retentive sleep mode. In: ISSCC, vol. 64, pp. 60–62 (2021). https://doi.org/10.1109/ISSCC42613.2021.9365939
Stadtmann, T., Latotzke, C., Gemmeke, T.: From quantitative analysis to synthesis of efficient binary neural networks. In: ICMLA, vol. 19, pp. 93–100 (2020). https://doi.org/10.1109/ICMLA51294.2020.00024
Venkataramani, S., Raghunathan, A., Liu, J., Shoaib, M.: Scalable-effort classifiers for energy-efficient machine learning. In: DAC, vol. 67, pp. 1–6 (2015). https://doi.org/10.1145/2744769.2744904
Xu, Z., Kusner, M., Weinberger, K., Chen, M.: Cost-sensitive tree of classifiers. In: PMLR, vol. 28, no. 1, pp. 133–141 (2013)
Xu, Z., Kusner, M.J., Weinberger, K.Q., Chen, M., Chapelle, O.: Classifier cascades and trees for minimizing feature evaluation cost. JMLR 15(1), 2113–2144 (2014)
Acknowledgment
This work was partially funded by the German BMBF project NEUROTEC under grant no. 16ES1134.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Latotzke, C., Loh, J., Gemmeke, T. (2022). Cascaded Classifier for Pareto-Optimal Accuracy-Cost Trade-Off Using Off-the-Shelf ANNs. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13164. Springer, Cham. https://doi.org/10.1007/978-3-030-95470-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-95470-3_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95469-7
Online ISBN: 978-3-030-95470-3
eBook Packages: Computer ScienceComputer Science (R0)