STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking | SpringerLink
Skip to main content

STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2022)

Abstract

Stochastic model checking (SMC) is a formal verification technique for the analysis of systems with probabilistic behavior. Scalability has been a major limiting factor for SMC tools to analyze real-world systems with large or infinite state spaces. The infinite-state Continuous-time Markov Chain (CTMC) model checker, STAMINA, tackles this problem by selectively exploring only a portion of a model’s state space, where a majority of the probability mass resides, to efficiently give an accurate probability bound to properties under verification. In this paper, we present two major improvements to STAMINA, namely, a method of calculating and distributing estimated state reachability probabilities that improves state space truncation efficiency and combination of the previous two CTMC analyses into one for generating the probability bound. Demonstration of the improvements on several benchmark examples, including hazard analysis of infinite-state combinational genetic circuits, yield significant savings in both run-time and state space size (and hence memory), compared to both the previous version of STAMINA and the infinite-state CTMC model checker INFAMY. The improved STAMINA demonstrates significant scalability to allow for the verification of complex real-world infinite-state systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)

    Article  MathSciNet  Google Scholar 

  2. Buecherl, L., et al.: Genetic circuit hazard analysis using stamina. In: 12th International Workshop on Bio-design Automation, pp. 39–40 (2020)

    Google Scholar 

  3. Češka, M., Chau, C., Křetínský, J.: SeQuaiA: a scalable tool for semi-quantitative analysis of chemical reaction networks. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification, pp. 653–666. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_32

    Chapter  Google Scholar 

  4. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) Computer Aided Verification, pp. 592–600. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31

    Chapter  Google Scholar 

  5. Fontanarrosa, P., Doosthosseini, H., Borujeni, A.E., Dorfan, Y., Voigt, C.A., Myers, C.: Genetic circuit dynamics: hazard and glitch analysis. ACS Synth. Biol. 9(9), 2324–2338 (2020)

    Article  Google Scholar 

  6. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: INFAMY: an infinite-state Markov model checker. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 641–647. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_49

    Chapter  Google Scholar 

  7. Kwiatkowsa, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Quantitative Evaluation of Systems, International Conference on(QEST), pp. 203–204, 09 2012. https://doi.org/10.1109/QEST.2012.14

  8. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_6

    Chapter  Google Scholar 

  9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  10. Lapin, M., Mikeev, L., Wolf, V.: SHAVE: stochastic hybrid analysis of Markov population models. In: Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, HSCC 2011, pp. 311–312. ACM, New York (2011)

    Google Scholar 

  11. Neupane, T., Myers, C.J., Madsen, C., Zheng, H., Zhang, Z.: STAMINA: stochastic approximate model-checker for infinite-state analysis. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification, pp. 540–549. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_31

    Chapter  Google Scholar 

  12. Neupane, T., Zhang, Z., Madsen, C., Zheng, H., Myers, C.J.: Approximation techniques for stochastic analysis of biological systems. In: Liò, P., Zuliani, P. (eds.) Automated Reasoning for Systems Biology and Medicine. CB, vol. 30, pp. 327–348. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17297-8_12

    Chapter  Google Scholar 

  13. Nielsen, A.A.K., et al.: Genetic circuit design automation. Science 352(6281), aac7341 (2016). https://doi.org/10.1126/science.aac7341, http://science.sciencemag.org/content/352/6281/aac7341

  14. Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems. Ph.D. Thesis, University of Birmingham (2002)

    Google Scholar 

  15. Rabe, M.N., Wintersteiger, C.M., Kugler, H., Yordanov, B., Hamadi, Y.: Symbolic approximation of the bounded reachability probability in large Markov chains. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 388–403. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_30

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors of this work are supported by the National Science Foundation under Grant Nos. 1856733, 1856740, 1939892 and 1856733, DARPA FA8750-17-C-0229, Dean’s Graduate Assistantship at the University of Colorado Boulder, and the University of Colorado Palmer Chair funds. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riley Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roberts, R., Neupane, T., Buecherl, L., Myers, C.J., Zhang, Z. (2022). STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking. In: Finkbeiner, B., Wies, T. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2022. Lecture Notes in Computer Science(), vol 13182. Springer, Cham. https://doi.org/10.1007/978-3-030-94583-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94583-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94582-4

  • Online ISBN: 978-3-030-94583-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics