Abstract
Stochastic model checking (SMC) is a formal verification technique for the analysis of systems with probabilistic behavior. Scalability has been a major limiting factor for SMC tools to analyze real-world systems with large or infinite state spaces. The infinite-state Continuous-time Markov Chain (CTMC) model checker, STAMINA, tackles this problem by selectively exploring only a portion of a model’s state space, where a majority of the probability mass resides, to efficiently give an accurate probability bound to properties under verification. In this paper, we present two major improvements to STAMINA, namely, a method of calculating and distributing estimated state reachability probabilities that improves state space truncation efficiency and combination of the previous two CTMC analyses into one for generating the probability bound. Demonstration of the improvements on several benchmark examples, including hazard analysis of infinite-state combinational genetic circuits, yield significant savings in both run-time and state space size (and hence memory), compared to both the previous version of STAMINA and the infinite-state CTMC model checker INFAMY. The improved STAMINA demonstrates significant scalability to allow for the verification of complex real-world infinite-state systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)
Buecherl, L., et al.: Genetic circuit hazard analysis using stamina. In: 12th International Workshop on Bio-design Automation, pp. 39–40 (2020)
Češka, M., Chau, C., Křetínský, J.: SeQuaiA: a scalable tool for semi-quantitative analysis of chemical reaction networks. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification, pp. 653–666. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_32
Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) Computer Aided Verification, pp. 592–600. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31
Fontanarrosa, P., Doosthosseini, H., Borujeni, A.E., Dorfan, Y., Voigt, C.A., Myers, C.: Genetic circuit dynamics: hazard and glitch analysis. ACS Synth. Biol. 9(9), 2324–2338 (2020)
Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: INFAMY: an infinite-state Markov model checker. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 641–647. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_49
Kwiatkowsa, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Quantitative Evaluation of Systems, International Conference on(QEST), pp. 203–204, 09 2012. https://doi.org/10.1109/QEST.2012.14
Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_6
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Lapin, M., Mikeev, L., Wolf, V.: SHAVE: stochastic hybrid analysis of Markov population models. In: Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, HSCC 2011, pp. 311–312. ACM, New York (2011)
Neupane, T., Myers, C.J., Madsen, C., Zheng, H., Zhang, Z.: STAMINA: stochastic approximate model-checker for infinite-state analysis. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification, pp. 540–549. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_31
Neupane, T., Zhang, Z., Madsen, C., Zheng, H., Myers, C.J.: Approximation techniques for stochastic analysis of biological systems. In: Liò, P., Zuliani, P. (eds.) Automated Reasoning for Systems Biology and Medicine. CB, vol. 30, pp. 327–348. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17297-8_12
Nielsen, A.A.K., et al.: Genetic circuit design automation. Science 352(6281), aac7341 (2016). https://doi.org/10.1126/science.aac7341, http://science.sciencemag.org/content/352/6281/aac7341
Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems. Ph.D. Thesis, University of Birmingham (2002)
Rabe, M.N., Wintersteiger, C.M., Kugler, H., Yordanov, B., Hamadi, Y.: Symbolic approximation of the bounded reachability probability in large Markov chains. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 388–403. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_30
Acknowledgement
The authors of this work are supported by the National Science Foundation under Grant Nos. 1856733, 1856740, 1939892 and 1856733, DARPA FA8750-17-C-0229, Dean’s Graduate Assistantship at the University of Colorado Boulder, and the University of Colorado Palmer Chair funds. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Roberts, R., Neupane, T., Buecherl, L., Myers, C.J., Zhang, Z. (2022). STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking. In: Finkbeiner, B., Wies, T. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2022. Lecture Notes in Computer Science(), vol 13182. Springer, Cham. https://doi.org/10.1007/978-3-030-94583-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-94583-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94582-4
Online ISBN: 978-3-030-94583-1
eBook Packages: Computer ScienceComputer Science (R0)