WIP: Pods: Privacy Compliant Scalable Decentralized Data Services | SpringerLink
Skip to main content

WIP: Pods: Privacy Compliant Scalable Decentralized Data Services

  • Conference paper
  • First Online:
Heterogeneous Data Management, Polystores, and Analytics for Healthcare (DMAH 2021, Poly 2021)

Abstract

Modern data services need to meet application developers’ demands in terms of scalability and resilience, and also support privacy regulations such as the EU’s GDPR. We outline the main systems challenges of supporting data privacy regulations in the context of large-scale data services, and advocate for causal snapshot consistency to ensure application-level and privacy-level consistency. We present Pods, an extension to the dataflow model that allows external services to access snapshotted operator state directly, with built-in support for addressing the outlined privacy challenges, and summarize open questions and research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akidau, T., et al.: Millwheel: fault-tolerant stream processing at internet scale. Proc. VLDB Endow. 6(11), 1033–1044 (2013). https://doi.org/10.14778/2536222.2536229, http://www.vldb.org/pvldb/vol6/p1033-akidau.pdf

  2. Akidau, T., et al.: The dataflow model: a practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing. Proc. VLDB Endow. 8(12), 1792–1803 (2015). https://doi.org/10.14778/2824032.2824076, http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf

  3. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 681–699. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_33

    Chapter  Google Scholar 

  4. Burckhardt, S., Gillum, C., Justo, D., Kallas, K., McMahon, C., Meiklejohn, C.S.: Serverless workflows with durable functions and netherite. CoRR abs/2103.00033 (2021). https://arxiv.org/abs/2103.00033

  5. California Legislature: California consumer privacy act of 2018 (CCPA) (2018). https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5

  6. Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., Tzoumas, K.: State management in apache flink®: consistent stateful distributed stream processing. Proc. VLDB Endow. 10(12), 1718–1729 (2017). https://doi.org/10.14778/3137765.3137777, http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf

  7. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache Flink™: stream and batch processing in a single engine. IEEE Data Eng. Bull. 38(4), 28–38 (2015). http://sites.computer.org/debull/A15dec/p28.pdf

  8. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985). https://doi.org/10.1145/214451.214456

    Article  Google Scholar 

  9. Council of the European Union: Regulation (EU) 2016/679 of the European parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/ec (general data protection regulation) (2016). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

  10. Fragkoulis, M., Carbone, P., Kalavri, V., Katsifodimos, A.: A survey on the evolution of stream processing systems. CoRR abs/2008.00842 (2020). https://arxiv.org/abs/2008.00842

  11. Gjengset, J., et al.: Noria: dynamic, partially-stateful data-flow for high-performance web applications. In: Arpaci-Dusseau, A.C., Voelker, G. (eds.) 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, 8–10 October 2018, pp. 213–231. USENIX Association (2018). https://www.usenix.org/conference/osdi18/presentation/gjengset

  12. Lightbend Inc: Akka. https://akka.io/. Accessed 21 May 2021

  13. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: a timely dataflow system. In: Kaminsky, M., Dahlin, M. (eds.) ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, 3–6 November 2013, pp. 439–455. ACM (2013). https://doi.org/10.1145/2517349.2522738

  14. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: 18th IEEE Computer Security Foundations Workshop, (CSFW-18 2005), 20–22 June 2005, Aix-en-Provence, France, pp. 255–269. IEEE Computer Society (2005). https://doi.org/10.1109/CSFW.2005.15

  15. Salvaneschi, G., Köhler, M., Sokolowski, D., Haller, P., Erdweg, S., Mezini, M.: Language-integrated privacy-aware distributed queries. In: Proceedings ACM Programming Language 3(OOPSLA), pp. 167:1–167:30 (2019). https://doi.org/10.1145/3360593

  16. Schwarzkopf, M., Kohler, E., Frans Kaashoek, M., Morris, R.: Position: GDPR compliance by construction. In: Gadepally, V., et al. (eds.) DMAH/Poly -2019. LNCS, vol. 11721, pp. 39–53. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33752-0_3

    Chapter  Google Scholar 

  17. Sreekanti, V., et al.: Cloudburst: stateful functions-as-a-service. Proc. VLDB Endow. 13(11), 2438–2452 (2020). http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf

  18. Stonebraker, M., Çetintemel, U.: “One size fits all”: an idea whose time has come and gone. In: Aberer, K., Franklin, M.J., Nishio, S. (eds.) Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, 5–8 April 2005, Tokyo, Japan, pp. 2–11. IEEE Computer Society (2005). https://doi.org/10.1109/ICDE.2005.1

  19. Stonebraker, M., Mattson, T.G., Kraska, T., Gadepally, V.: Poly’19 workshop summary: GDPR. SIGMOD Rec. 49(3), 55–58 (2020). https://doi.org/10.1145/3444831.3444842

    Article  Google Scholar 

  20. The Apache Software Foundation: Apache Flink stateful functions (2021). https://flink.apache.org/stateful-functions.html. Accessed 14 June 2021

  21. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow analysis. J. Comput. Secur. 4(2/3), 167–188 (1996). https://doi.org/10.3233/JCS-1996-42-304

    Article  Google Scholar 

  22. Wang, L., et al.: Data capsule: a new paradigm for automatic compliance with data privacy regulations. In: Gadepally, V., et al. (eds.) DMAH/Poly -2019. LNCS, vol. 11721, pp. 3–23. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33752-0_1

    Chapter  Google Scholar 

  23. Zhang, W., Fang, V., Panda, A., Shenker, S.: Kappa: a programming framework for serverless computing. In: Fonseca, R., Delimitrou, C., Ooi, B.C. (eds.) SoCC 2020: ACM Symposium on Cloud Computing, Virtual Event, USA, 19–21 October 2020, pp. 328–343. ACM (2020). https://doi.org/10.1145/3419111.3421277

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments. This work was partially funded by the Swedish Foundation for Strategic Research (SSF grant no. BD15-0006) and by Digital Futures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Spenger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spenger, J., Carbone, P., Haller, P. (2021). WIP: Pods: Privacy Compliant Scalable Decentralized Data Services. In: Rezig, E.K., et al. Heterogeneous Data Management, Polystores, and Analytics for Healthcare. DMAH Poly 2021 2021. Lecture Notes in Computer Science(), vol 12921. Springer, Cham. https://doi.org/10.1007/978-3-030-93663-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93663-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93662-4

  • Online ISBN: 978-3-030-93663-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics