Abstract
Constraints, in a broad sense, are restrictions that exist (or should exist) in a dataset. There are many different kinds of constraints, that differ not only in their semantics, but also, in the domains in which they are present: database design, knowledge discovery, data analysis, to name a few. Formal Concept Analysis and Pattern Structures has been used to characterize and compute different kinds of constraints. The fact that this unified framework can embrace all this diversity has been an appealing line of research during the last years. In this paper we revisit some of our relevant results in this field. Moreover, we also discuss limitations and drawbacks and suggest possible directions within this field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, Reading (MA), USA, 1995.
J. Baixeries. A formal concept analysis framework to model functional dependencies. In Mathematical Methods for Learning, 2004.
J. Baixeries. Lattice Characterization of Armstrong and Symmetric Dependencies (PhD Thesis). Universitat Politècnica de Catalunya, 2007.
J. Baixeries. A Formal Context for Symmetric Dependencies, pages 90–105. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
J. Baixeries. A formal context for acyclic join dependencies. In M. Kryszkiewicz, A. Appice, D. Ślezak, H. Rybinski, A. Skowron, and Z. W. Raś, editors, Foundations of Intelligent Systems, pages 563–572, Cham, 2017. Springer International Publishing.
J. Baixeries and J. L. Balcázar. Characterization and armstrong relations for degenerate multivalued dependencies using formal concept analysis. In B. Ganter and R. Godin, editors, ICFCA, volume 3403 of Lecture Notes in Computer Science, pages 162–175. Springer, 2005.
J. Baixeries and J. L. Balcázar. A lattice representation of relations, multivalued dependencies and armstrong relations. In ICCS, pages 13–26, 2005.
J. Baixeries, V. Codocedo, M. Kaytoue, and A. Napoli. Characterizing approximate-matching dependencies in formal concept analysis with pattern structures. Discrete Applied Mathematics, 249:18 – 27, 2018. Concept Lattices and Applications: Recent Advances and New Opportunities.
J. Baixeries, M. Kaytoue, and A. Napoli. Computing functional dependencies with pattern structures. In L. Szathmary and U. Priss, editors, CLA, volume 972 of CEUR Workshop Proceedings, pages 175–186. CEUR-WS.org, 2012.
J. Baixeries, M. Kaytoue, and A. Napoli. Computing similarity dependencies with pattern structures. In M. Ojeda-Aciego and J. Outrata, editors, CLA, volume 1062 of CEUR Workshop Proceedings, pages 33–44. CEUR-WS.org, 2013.
J. Baixeries, M. Kaytoue, and A. Napoli. Characterizing Functional Dependencies in Formal Concept Analysis with Pattern Structures. Annals of Mathematics and Artificial Intelligence, 72(1–2):129–149, Oct. 2014.
R. Belohlávek and V. Vychodil. Data tables with similarity relations: Functional dependencies, complete rules and non-redundant bases. In M.-L. Lee, K.-L. Tan, and V. Wuwongse, editors, DASFAA, volume 3882 of Lecture Notes in Computer Science, pages 644–658. Springer, 2006.
M. Baudinet, J. Chomicki, and P. Wolper. Constraint-generating dependencies. J. Comput. Syst. Sci., 59(1):94–115, 1999.
L. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data cleaning and query answering with matching dependencies and matching functions. In Proceedings of the 14th International Conference on Database Theory, ICDT ’11, pages 268–279, New York, NY, USA, 2011. ACM.
P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional dependencies for data cleaning. In ICDE, pages 746–755, 2007.
L. Caruccio, V. Deufemia, and G. Polese. Relaxed functional dependencies - A survey of approaches. IEEE Trans. Knowl. Data Eng., 28(1):147–165, 2016.
N. Caspard and B. Monjardet. The lattices of closure systems, closure operators, and implicational systems on a finite set: A survey. Discrete Applied Mathematics, 127(2):241–269, 2003.
V. Codocedo, J. Baixeries, M. Kaytoue, and A. Napoli. Characterization of Order-like Dependencies with Formal Concept Analysis. In M. Huchard and S. Kuznetsov, editors, Proceedings of the Thirteenth International Conference on Concept Lattices and Their Applications, Moscow, Russia, July 18–22, 2016., volume 1624 of CEUR Workshop Proceedings, pages 123–134. CEUR-WS.org, 2016.
V. Codocedo, J. Baixeries, M. Kaytoue, and A. Napoli. Contributions to the Formalization of Order-like Dependencies using FCA. In What can FCA do for Artificial Intelligence?, The Hague, Netherlands, Aug. 2016.
J. Demetrovics, G. Hencsey, L. Libkin, and I. B. Muchnik. Normal form relation schemes: A new characterization. Acta Cybern., 10(3):141–153, 1992.
W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic constraints for record matching. The VLDB Journal, 20(4):495–520, Aug. 2011.
A. Floratou, N. Teletia, D. J. DeWitt, J. M. Patel, and D. Zhang. Can the elephants handle the nosql onslaught? Proc. VLDB Endow., 5(12):1712–1723, Aug. 2012.
B. Ganter and S. O. Kuznetsov. Pattern Structures and Their Projections. In Proceedings of ICCS 2001, Lecture Notes in Computer Science 2120, pages 129–142. Springer, 2001.
B. Ganter and R. Wille. Formal Concept Analysis. Springer, Berlin, 1999.
J.-L. Guigues and V. Duquenne. Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines, 95:5–18, 1986.
M. Kaytoue, S. O. Kuznetsov, A. Napoli, and S. Duplessis. Mining gene expression data with pattern structures in Formal Concept Analysis. Information Sciences, 181(10):1989–2001, 2011.
S. O. Kuznetsov. Machine learning on the basis of formal concept analysis. Autom. Remote Control, 62(10):1543–1564, Oct. 2001.
S. O. Kuznetsov. Pattern Structures for Analyzing Complex Data. In H. Sakai, M. K. Chakraborty, A. E. Hassanien, D. Slezak, and W. Zhu, editors, RSFDGrC, volume 5908 of Lecture Notes in Computer Science, pages 33–44. Springer, 2009.
S. Lopes, J.-M. Petit, and L. Lakhal. Functional and approximate dependency mining: database and fca points of view. Journal of Experimental and Theoretical Artificial Intelligence, 14(2–3):93–114, 2002.
D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.
H. Mannila and K.-J. Räihä. The Design of Relational Databases. Addison-Wesley, Reading (MA), USA, 1992.
R. Medina and L. Nourine. Conditional functional dependencies: An fca point of view. In L. Kwuida and B. Sertkaya, editors, ICFCA, volume 5986 of Lecture Notes in Computer Science, pages 161–176. Springer, 2010.
S. Song and L. Chen. Efficient discovery of similarity constraints for matching dependencies. Data & Knowledge Engineering, 87(0):146 – 166, 2013.
S. Song, L. Chen, and P. S. Yu. Comparable dependencies over heterogeneous data. The VLDB Journal, 22(2):253–274, Apr. 2013.
J. Ullman. Principles of Database Systems and Knowledge-Based Systems, volumes 1–2. Computer Science Press, Rockville (MD), USA, 1989.
R. Wille. Why can concept lattices support knowledge discovery in databases? Journal of Experimental and Theoretical Artificial Intelligence, 14(2–3):81–92, 2002.
Acknowledgements
This research was supported by the recognition of 2017SGR-856 (MACDA) from AGAUR (Generalitat de Catalunya), and the grant TIN2017-89244-R from MINECO (Ministerio de Economía y Competitividad).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Baixeries, J., Codocedo, V., Kaytoue, M., Napoli, A. (2022). Computing Dependencies Using FCA. In: Missaoui, R., Kwuida, L., Abdessalem, T. (eds) Complex Data Analytics with Formal Concept Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-93278-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-93278-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93277-0
Online ISBN: 978-3-030-93278-7
eBook Packages: Computer ScienceComputer Science (R0)