Data Mining for Software Engineering: A Survey | SpringerLink
Skip to main content

Data Mining for Software Engineering: A Survey

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 371))

Included in the following conference series:

Abstract

In this present world of technology, software engineering is needed almost in every industry, institution etc. On the other hand, data mining processes raw data to obtain useful information. By implementing data mining in software engineering, software quality and productivity can be improved. This paper examines this fascinating and still advancing research area, so that readers can easily get an elaborate outline. We review in detail existing techniques of data mining for software engineering research and provide a comparative evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 19447
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 24309
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: 28th International Conference on Software Engineering, pp. 452–461. Assosiation for Computing Machinary, New York (2006)

    Google Scholar 

  2. Vandecruys, O., Martens, D., Baesens, B., Mue, C., Backer, M.D., Haesen, R.: Mining software repositories for comprehensible software fault prediction models. J. Syst. Softw. 81(5), 832–839 (2008)

    Article  Google Scholar 

  3. Witte, R., Li, Q., Zhang, Y., Rilling, J.: Text mining and software engineering: an integrated source code and document analysis approach. J. Eng. 2(1), 3–16 (2008)

    Google Scholar 

  4. Jureczko, M., Madeyski, L.: Towards identifying software project clusters with regard to defect prediction. In: 6th International Conference on Predictive Models in Software Engineering, pp. 1–10 (2010)

    Google Scholar 

  5. Corazza, A., Martino, S.D., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.: Using Tabu search to configure support vector regression for effort estimation. Empir. Software Eng. 18, 506–546 (2011)

    Article  Google Scholar 

  6. Sun, Z., Song, Q., Zhu, X.: Using coding based ensemble learning to improve software defect prediction. IEEE Trans. Syst. Man Cybern. 42(6), 1806–1817 (2012)

    Article  Google Scholar 

  7. Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., Zhang, D.: Mining succinct and high-coverage API usage patterns from source code. In: 10th Working Conference on Mining Software Repositories, pp. 319–328. San Francisco (2013)

    Google Scholar 

  8. Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE Trans. Reliab. 62(2), 434–443 (2013)

    Article  Google Scholar 

  9. Sadeghi, A., Esfahani, N., Malek, S.: Mining the categorized software repositories to improve the analysis of security vulnerabilities. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 155–169. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_11

    Chapter  Google Scholar 

  10. Gayathri, M., Sudha, A.: Software defect prediction system using multilayer perceptron neural network with data mining. Int. J. Recent Technol. Eng. 3(2) (2014)

    Google Scholar 

  11. Dwivedi, A.K., Tirkey, A., Ray, R.B., Rath, S.K.: Software design pattern recognition using machine learning techniques. In: IEEE Region 10 Conference (TENCON), pp. 222–227. IEEE Press, Signapore (2006)

    Google Scholar 

  12. Zhang, Z., Jing, X., Wang, T.: Label propagation based semi-supervised learning for software defect prediction. Autom. Softw. Eng. 24, 47–69 (2016)

    Article  Google Scholar 

  13. Shao, Y., Liu, B., Li, G., Wang, S.: Software defect prediction based on class-association rules. In: 2nd International Conference on Reliability Systems Engineering (ICRSE), pp. 1–5. IEEE, China (2017)

    Google Scholar 

  14. Huda, S., et al.: An ensemble oversampling model for class imbalance problem in software defect prediction. IEEE Access. 6, 24184–24195 (2018)

    Article  Google Scholar 

  15. Dwivedi, A.K., Tirkey, A., Rath, S.K.: Software design pattern mining using classification-based techniques. Front. Comput. Sci. 12, 908–922 (2018)

    Article  Google Scholar 

  16. NASA Software Project Dataset. http://mdp.ivv.nasa.gov. Accessed 2 Dec 2004

  17. PROMISE: Repository of Empirical Software Engineering Data. http://promisedata.org/repository (2011)

  18. Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification. http://www.csie.ntu.edu.tw/\~cjlin/papers/guide/guide.pdf (2010)

  19. Boetticher, G., Menzies, T., Ostrand, T.J.: Promise Repository of Empirical Software Engineering Data. http://promisedata.org/repository

  20. Shirabad, J.S., Menzies, T.J.: The PROMISE repository of software engineering databases. School Inf. Technol. Eng. http://promise.site.uottawa.ca/SERepository. Accessed 12 Apr 2018

  21. Intelligent computing optimization. In: Conference Proceedings ICO. Springer, Cham (2018). ISBN 978-3-030-00978-6 https://www.springer.com/gp/book/9783030009786

  22. Intelligent computing and optimization. In: Proceedings of the 2nd International Conference on Intelligent Computing and Optimization 2019 (ICO 2019), Springer International Publishing (2019). ISBN 978-3-030-33585-4 https://www.springer.com/gp/book/9783030335847

  23. Intelligent computing and optimization. In: Proceedings of the 3rd International Conference on Intelligent Computing and Optimization 2020 (ICO 2020). https://link.springer.com/book/10.1007/978-3-030-68154-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shamsul Arefin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maimuna, M., Rahman, N., Ahmed, R., Arefin, M.S. (2022). Data Mining for Software Engineering: A Survey. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing & Optimization. ICO 2021. Lecture Notes in Networks and Systems, vol 371. Springer, Cham. https://doi.org/10.1007/978-3-030-93247-3_86

Download citation

Publish with us

Policies and ethics