Abstract
In this present world of technology, software engineering is needed almost in every industry, institution etc. On the other hand, data mining processes raw data to obtain useful information. By implementing data mining in software engineering, software quality and productivity can be improved. This paper examines this fascinating and still advancing research area, so that readers can easily get an elaborate outline. We review in detail existing techniques of data mining for software engineering research and provide a comparative evaluation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: 28th International Conference on Software Engineering, pp. 452–461. Assosiation for Computing Machinary, New York (2006)
Vandecruys, O., Martens, D., Baesens, B., Mue, C., Backer, M.D., Haesen, R.: Mining software repositories for comprehensible software fault prediction models. J. Syst. Softw. 81(5), 832–839 (2008)
Witte, R., Li, Q., Zhang, Y., Rilling, J.: Text mining and software engineering: an integrated source code and document analysis approach. J. Eng. 2(1), 3–16 (2008)
Jureczko, M., Madeyski, L.: Towards identifying software project clusters with regard to defect prediction. In: 6th International Conference on Predictive Models in Software Engineering, pp. 1–10 (2010)
Corazza, A., Martino, S.D., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.: Using Tabu search to configure support vector regression for effort estimation. Empir. Software Eng. 18, 506–546 (2011)
Sun, Z., Song, Q., Zhu, X.: Using coding based ensemble learning to improve software defect prediction. IEEE Trans. Syst. Man Cybern. 42(6), 1806–1817 (2012)
Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., Zhang, D.: Mining succinct and high-coverage API usage patterns from source code. In: 10th Working Conference on Mining Software Repositories, pp. 319–328. San Francisco (2013)
Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE Trans. Reliab. 62(2), 434–443 (2013)
Sadeghi, A., Esfahani, N., Malek, S.: Mining the categorized software repositories to improve the analysis of security vulnerabilities. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 155–169. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_11
Gayathri, M., Sudha, A.: Software defect prediction system using multilayer perceptron neural network with data mining. Int. J. Recent Technol. Eng. 3(2) (2014)
Dwivedi, A.K., Tirkey, A., Ray, R.B., Rath, S.K.: Software design pattern recognition using machine learning techniques. In: IEEE Region 10 Conference (TENCON), pp. 222–227. IEEE Press, Signapore (2006)
Zhang, Z., Jing, X., Wang, T.: Label propagation based semi-supervised learning for software defect prediction. Autom. Softw. Eng. 24, 47–69 (2016)
Shao, Y., Liu, B., Li, G., Wang, S.: Software defect prediction based on class-association rules. In: 2nd International Conference on Reliability Systems Engineering (ICRSE), pp. 1–5. IEEE, China (2017)
Huda, S., et al.: An ensemble oversampling model for class imbalance problem in software defect prediction. IEEE Access. 6, 24184–24195 (2018)
Dwivedi, A.K., Tirkey, A., Rath, S.K.: Software design pattern mining using classification-based techniques. Front. Comput. Sci. 12, 908–922 (2018)
NASA Software Project Dataset. http://mdp.ivv.nasa.gov. Accessed 2 Dec 2004
PROMISE: Repository of Empirical Software Engineering Data. http://promisedata.org/repository (2011)
Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification. http://www.csie.ntu.edu.tw/\~cjlin/papers/guide/guide.pdf (2010)
Boetticher, G., Menzies, T., Ostrand, T.J.: Promise Repository of Empirical Software Engineering Data. http://promisedata.org/repository
Shirabad, J.S., Menzies, T.J.: The PROMISE repository of software engineering databases. School Inf. Technol. Eng. http://promise.site.uottawa.ca/SERepository. Accessed 12 Apr 2018
Intelligent computing optimization. In: Conference Proceedings ICO. Springer, Cham (2018). ISBN 978-3-030-00978-6 https://www.springer.com/gp/book/9783030009786
Intelligent computing and optimization. In: Proceedings of the 2nd International Conference on Intelligent Computing and Optimization 2019 (ICO 2019), Springer International Publishing (2019). ISBN 978-3-030-33585-4 https://www.springer.com/gp/book/9783030335847
Intelligent computing and optimization. In: Proceedings of the 3rd International Conference on Intelligent Computing and Optimization 2020 (ICO 2020). https://link.springer.com/book/10.1007/978-3-030-68154-8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Maimuna, M., Rahman, N., Ahmed, R., Arefin, M.S. (2022). Data Mining for Software Engineering: A Survey. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing & Optimization. ICO 2021. Lecture Notes in Networks and Systems, vol 371. Springer, Cham. https://doi.org/10.1007/978-3-030-93247-3_86
Download citation
DOI: https://doi.org/10.1007/978-3-030-93247-3_86
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93246-6
Online ISBN: 978-3-030-93247-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)