Abstract
Person search by natural language description aims to retrieve the most related person in the image gallery according to the given textual descriptions. This task is challenging due to the gap of cross-domain and cross-modality. Previous methods align the local visual-textual features based on the global matching score while ignoring capturing the fine-grained cross-modal correspondence between image and text. In this paper, we propose a novel framework named Enhanced Attributes Alignment based on Semantic Co-Attention (EAA-SCA) for text-based person search. The proposed SCA consists of Self-Attention (SA) modules and Relationships Attention (RA) modules cascaded in depth. SA module takes visual attribute features and textual features as input respectively to learn the internal dependencies of single modality. Then self-attended visual attribute features and self-attended textual features are feed into RA module to learn more fine-grained visual attribute features rich in semantic relationships between visual attributes and textual description, which contributes to more precise attributes alignment. Experimental results on CUHK-PEDES dataset demonstrate the effectiveness of the proposed method. With assistance from SCA, the performance improves 2.43% on Rank-1 in text-based person search.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, S., Xiao, T., Li, H., et al.: Person search with natural language description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1970–1979 (2017)
Chen, T., Xu, C., Luo, J.: Improving text-based person search by spatial matching and adaptive threshold. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1879–1887. IEEE (2018)
Zheng, Z., Zheng, L., Garrett, M., et al.: Dual-path convolutional image-text embedding with instance loss. arXiv preprint arXiv:1711.05535 (2017)
Zhang, Y., Lu, H.: Deep cross-modal projection learning for image-text matching. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 707–723. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_42
Aggarwal, S., Radhakrishnan, V.B., Chakraborty, A.: Text-based person search via attribute-aided matching. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2617–2625 (2020)
Liu, J., Zha, Z.J., Hong, R., et al.: Deep adversarial graph attention convolution network for text-based person search. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 665–673 (2019)
Sarafianos, N., Xu, X., Kakadiaris, I.A.: Adversarial representation learning for text-to-image matching. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5814–5824 (2019)
Lee, K.-H., Chen, X., Hua, G., Hu, H., He, X.: Stacked cross attention for image-text matching. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 212–228. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_13
Liu, Y., Guo, Y., Bakker, E.M., et al.: Learning a recurrent residual fusion network for multimodal matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4107–4116 (2017)
Jing, Y., Si, C., Wang, J., et al.: Pose-guided multi-granularity attention network for text-based person search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 11189–11196 (2020)
Wang, Z., Fang, Z., Wang, J., Yang, Y.: ViTAA: visual-textual attributes alignment in person search by natural language. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 402–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_24
Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)
Jing, Y., Si, C., Wang, J., et al.: Cascade attention network for person search: both image and text-image similarity selection 2(3), 5. arXiv preprint arXiv:1809.08440 (2018)
Kim, J.H., Jun, J., Zhang, B.T.: Bilinear attention networks. arXiv preprint arXiv:1805.07932 (2018)
Yu, Z., Yu, J., Cui, Y., et al.: Deep modular co-attention networks for visual question answering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6281–6290 (2019)
He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)
Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural language parsing. In: Advances in Neural Information Processing Systems, pp. 3–10 (2003)
Sun, K., Xiao, B., Liu, D., et al.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)
Manning, C.D., Surdeanu, M., Bauer, J., et al.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Yan, F., Mikolajczyk, K.: Deep correlation for matching images and text. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3441–3450 (2015)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Li, S., Xiao, T., Li, H., et al.: Identity-aware textual-visual matching with latent co-attention. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1890–1899 (2017)
Wang, Y., Bo, C., Wang, D., et al.: Language person search with mutually connected classification loss. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2057–2061. IEEE (2019)
Veličković, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Su, C., Li, J., Zhang, S., et al.: Pose-driven deep convolutional model for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3960–3969 (2017)
Zheng, L., Huang, Y., Lu, H., et al.: Pose-invariant embedding for deep person re-identification. IEEE Trans. Image Process. 28(9), 4500–4509 (2019)
Kalayeh, M.M., Basaran, E., Gökmen, M., et al.: Human semantic parsing for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1062–1071 (2018)
Liang, X., Gong, K., Shen, X., et al.: Look into person: joint body parsing & pose estimation network and a new benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 871–885 (2018)
Yin, Z., Zheng, W.S., Wu, A., et al.: Adversarial attribute-image person re-identification. arXiv preprint arXiv:1712.01493 (2017)
Layne, R., Hospedales, T.M., Gong, S.: Attributes-based re-identification. In: Gong, S., Cristani, M., Yan, S., Loy, C.C. (eds.) Person Re-Identification. ACVPR, pp. 93–117. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6296-4_5
Farooq, A., Awais, M., Kittler, J., et al.: AXM-Net: cross-modal context sharing attention network for person Re-ID. arXiv preprint arXiv:2101.08238 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, H., Hu, Z. (2021). Enhanced Attribute Alignment Based on Semantic Co-Attention for Text-Based Person Search. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-93046-2_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93045-5
Online ISBN: 978-3-030-93046-2
eBook Packages: Computer ScienceComputer Science (R0)