Revisiting Knowledge Distillation for Image Captioning | SpringerLink
Skip to main content

Revisiting Knowledge Distillation for Image Captioning

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

Abstract

Knowledge Distillation (KD) [6], as an effective technique for model compression and improving a model’s performance, has been widely studied and adopted. However, most previous researches focus on image classification and few on sequence generation (such as Neural Machine Translation). We also note that few works for image captioning have incorporated KD, but they mainly treat it as a training trick. In contrast, we thoroughly investigate KD in the context of the image captioning task by conducting a series of experiments in this work. Specifically, we first apply the standard word-level KD to the image captioning model and explore cross-model distillation and self-distillation. We find that self-distillation is a practical choice that can achieve competitive performance while without spending time on choosing teacher’s architecture. Inspired by the sequence-level distillation for Neural Machine Translation (NMT) [11], we secondly adopt and modify it for image captioning and observe that competitive performance can be obtained using only one-fifth of resources and the speed of inference can be significantly improved by eliminating the need for beam search at the cost of slight performance degradation. Inspired by distilling BERT [19] for NMT, we finally try to distill VL-BERT [12] to make the captioning model look ahead by leveraging its bidirectional nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ruotianluo/self-critical.

  2. 2.

    https://github.com/LuoweiZhou/VLP.

References

  1. Vaswani, A., et al.: Attention is all you need. In arXiv (2017)

    Google Scholar 

  2. Lin, T.-Y., et al.: Microsoft coco: common objects in context. In: ECCV (2014)

    Google Scholar 

  3. Papineni, K., et al.: Bleu: a method for automatic evaluation of machine translation. In: ACL (2002)

    Google Scholar 

  4. Vinyals, O., et al.: Show and tell: a neural image caption generator. In: CVPR (2015)

    Google Scholar 

  5. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: ICML (2015)

    Google Scholar 

  6. Hinton, G.E., et al.: Distilling the knowledge in a neural network. In arXiv (2015)

    Google Scholar 

  7. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: CVPR (2018)

    Google Scholar 

  8. Lin, C.-Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out (2004)

    Google Scholar 

  9. Vedantam, R., Lawrence, Z.C., Parikh, D. Cider: consensus-based image description evaluation. In: CVPR (2015)

    Google Scholar 

  10. Zhang, Y., et al.: Deep mutual learning. In: CVPR (2018)

    Google Scholar 

  11. Kim, Y., Rush, A.M.: Sequence-level knowledge distillation. In arXiv (2016)

    Google Scholar 

  12. Zhou, L., et al.: Unified vision-language pre-training for image captioning and vqa. In: AAAI (2020)

    Google Scholar 

  13. Zhang, L., et al.: Be your own teacher: improve the performance of convolutional neural networks via self distillation. In: ICCV (2019)

    Google Scholar 

  14. Zhou, Y., et al.: More grounded image captioning by distilling image-text matching model. In: CVPR (2020)

    Google Scholar 

  15. Pan, Y., et al.: X-linear attention networks for image captioning. In: CVPR (2020)

    Google Scholar 

  16. Denkowski, M., Alon, L.: Meteor universal: language specific translation evaluation for any target language. In: Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 376–380 (2014)

    Google Scholar 

  17. Hahn, S., Choi, H.: Self-knowledge distillation in natural language processing. In arXiv (2019)

    Google Scholar 

  18. Rennie, S.J., et al.: Self-critical sequence training for image captioning. In: CVPR (2017)

    Google Scholar 

  19. Chen, Y.-C., et al.: Distilling knowledge learned in BERT for text generation. In arXiv (2019)

    Google Scholar 

  20. Dognin, P.L., et al.: Alleviating noisy data in image captioning with cooperative distillation. In: arXiv (2020)

    Google Scholar 

  21. Guo, L., et al.: Non-autoregressive image captioning with counterfactuals-critical multi-agent learning. In arXiv (2020)

    Google Scholar 

  22. Zhang, Z., et al.: Object relational graph with teacher-recommended learning for video captioning. In: CVPR (2020)

    Google Scholar 

  23. Pan, B., et al.: Spatio-temporal graph for video captioning with knowledge distillation. In: CVPR (2020)

    Google Scholar 

  24. Plummer, B.A., et al.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. In: ICCV (2015)

    Google Scholar 

  25. Anderson, P., et al.: SPICE: Semantic Propositional Image Caption Evaluation. In: ECCV (2016)

    Google Scholar 

  26. Yuan, L., et al.: Revisiting knowledge distillation via label smoothing regularization. In: CVPR (2020)

    Google Scholar 

  27. Li, J., et al.: Learning to learn from noisy labeled data. In: CVPR (2019)

    Google Scholar 

  28. He, Y.-Y., Jianxin, W., Wei, X.-S.: Distilling virtual examples for long-tailed recognition. In arXiv (2021)

    Google Scholar 

  29. Furlanello, T., et al.: Born again neural networks. In: ICML (2018)

    Google Scholar 

  30. Devlin, J., et al.: Bert: pre-training of deep bidirectional transformers for language understanding. In arXiv (2018)

    Google Scholar 

  31. Dhar, G.K.V.P.S., et al.: Baby Talk: Understanding and Generating Simple Image Descriptions (2013)

    Google Scholar 

  32. Mitchell, M., et al.: Midge: generating image descriptions from computer vision detections. In: ECACL (2012)

    Google Scholar 

  33. Huang, L., et al.: Attention on attention for image captioning. In: ICCV (2019)

    Google Scholar 

  34. Cornia, M., et al.: Meshed-memory transformer for image captioning. In: CVPR (2020)

    Google Scholar 

  35. Chen, D., Mei, J.P., Wang, C., Feng, Y., Chen, C.: Online knowledge distillation with diverse peers. In: AAAI (2020)

    Google Scholar 

  36. Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisit knowledge distillation: a teacher-free framework. In: CVPR (2020)

    Google Scholar 

  37. Huang, Z., Wang, N.: Like what you like: Knowledge distill via neuron selectivity transfer. In arXiv (2017)

    Google Scholar 

  38. Wei, H.R., Huang, S., Wang, R., Dai, X., Chen, J.: Online distilling from checkpoints for neural machine translation. In: NAACL-HLT (2019)

    Google Scholar 

  39. Freitag, M., Al-Onaizan, Y., Sankaran, B.: Ensemble distillation for neural machine translation. In arXiv (2017)

    Google Scholar 

  40. Su, W., et al.: VL-BERT: pre-training of generic visual-linguistic representations. In arXiv (2019)

    Google Scholar 

  41. Lu, J., et al.: ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In arXiv (2019)

    Google Scholar 

  42. Li, L.H., et al.: VisualBERT: a simple and performant baseline for vision and language. In arXiv (2019)

    Google Scholar 

  43. Kim, J., Park, S.U.K., Kwak, N.: Paraphrasing complex network: network compression via factor transfer. In arXiv (2018)

    Google Scholar 

  44. Romero, A., et al.: Fitnets: hints for thin deep nets. In arXiv (2014)

    Google Scholar 

  45. Zagoruyko, S., Nikos, K.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In arXiv (2016)

    Google Scholar 

  46. Park, W., et al.: Relational knowledge distillation. In: CVPR (2019)

    Google Scholar 

  47. Chen, H., et al.: Learning student networks via feature embedding. IEEE TNNLS (2020)

    Google Scholar 

  48. Xie, J., et al.: Training convolutional neural networks with cheap convolutions and online distillation. In arXiv (2019)

    Google Scholar 

  49. Bagherinezhad, H., et al.: Label refinery: improving imagenet classification through label progression. In arXiv (2018)

    Google Scholar 

  50. Karpathy, A., Li, F.-F.: Deep visual-semantic alignments for generating image descriptions. In: CVPR (2015)

    Google Scholar 

  51. Kingma, D.P., Jimmy, B.: Adam: a method for stochastic optimization. In arXiv (2014)

    Google Scholar 

  52. Sharma, P., et al.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: ACL (2018)

    Google Scholar 

  53. Szegedy, C., et al.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, J., Hu, Z., Zhou, Y. (2021). Revisiting Knowledge Distillation for Image Captioning. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics