Abstract
Let \(H=(V,E)\) be a hypergraph with vertex set V and edge set E. \(S\subseteq V\) is a feedback vertex set (FVS) of H if \(H{\setminus } S\) has no cycle and \(\tau _c(H)\) denote the minimum cardinality of a FVS of H. Chen et al. [IWOCA, 2016] has proven if H is a hypergraph with m edges, then \(\tau _c(H)\le m/3\). In this paper, we furthermore characterize all the extremal hypergraphs with \(\tau _c(H)= m/3\) holds.
Supported by National Natural Science Foundation of China under Grant No. 11901605, No. 11901292, No. 71801232, No. 12101069, the disciplinary funding of Central University of Finance and Economics, the Emerging Interdisciplinary Project of CUFE, the Fundamental Research Funds for the Central Universities and Innovation Foundation of BUPT for Youth (500421358).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, A., Gupta, S., Saurabh, S., Sharma, R.: Improved algorithms and combinatorial bounds for independent feedback vertex set. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). LIPIcs, Aarhus, Denmark, vol. 63, pp. 2:1–2:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)
Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd edn. Wiley, New York (2008)
Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)
Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM J. Comput. 27(4), 942–959 (1998)
Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem. J. Artif. Intell. Res. 12, 219–234 (2000)
Berge, C.: Hypergraphs - Combinatorics of Finite Sets. North-Holland Mathematical Library, vol. 45. North-Holland, Amsterdam (1989)
Brualdi, R.A.: Introductory Combinatorics, 5th edn. Pearson Education, London (2009)
Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5), 21:1–21:19 (2008)
Chen, X., Diao, Z., Hu, X., Tang, Z.: Sufficient conditions for Tuza’s conjecture on packing and covering triangles. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 266–277. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44543-4_21
Chen, X., Diao, Z., Hu, X., Tang, Z.: Covering triangles in edge-weighted graphs. Theory Comput. Syst. 62(6), 1525–1552 (2018). https://doi.org/10.1007/s00224-018-9860-7
Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS 2011), Palm Springs, CA, USA, pp. 150–159. IEEE Computer Society (2011)
Dechter, R.: Enhancement schemes for constraint processing: backjumping, learning, and cutset decomposition. Artif. Intell. 41(3), 273–312 (1990)
Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)
Erdös, P., Pósa, L.: On independent circuits contained in a graph. Can. J. Math. 17, 347–352 (1965)
Even, G., Naor, J.S., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multi-cuts in directed graphs. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 14–28. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59408-6_38
Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 209–258. Springer, Boston (1999). https://doi.org/10.1007/978-1-4757-3023-4_4
Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008). https://doi.org/10.1007/s00453-007-9152-0
Fujito, T.: Approximating minimum feedback vertex sets in hypergraphs. Theor. Comput. Sci. 246(1–2), 107–116 (2000)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)
Gupta, A., Lee, E., Li, J., Manurangsi, P., Wlodarczyk, M.: Losing treewidth by separating subsets. In: Chan, T.M. (ed.) Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), San Diego, California, USA, pp. 1731–1749. SIAM (2019)
Kenneth Brooks, R., Ernest Tilden, P.: Disproof of a conjecture of Erdös and Moser on tournaments. J. Comb. Theory 9(3), 225–238 (1970)
Kim, E.J., Kwon, O.: Erdős-Pósa property of chordless cycles and its applications. J. Comb. Theory Ser. B 145, 65–112 (2020)
Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014)
Neumann-Lara, V.: A short proof of a theorem of Reid and Parker on tournaments. Graphs Comb. 10(2–4), 363–366 (1994). https://doi.org/10.1007/BF02986686
Razgon, I.: Computing minimum directed feedback vertex set in o(1.9977\({}^{\text{n}}\)). In: Italiano, G.F., Moggi, E., Laura, L. (eds.) 10th Italian Conference on Theoretical Computer Science (ICTCS 2007), Rome, Italy, pp. 70–81. World Scientific (2007)
Reed, B.A., Robertson, N., Seymour, P.D., Thomas, R.: Packing directed circuits. Combinatorica 16(4), 535–554 (1996). https://doi.org/10.1007/BF01271272
Wang, C., Lloyd, E.L., Soffa, M.L.: Feedback vertex sets and cyclically reducible graphs. J. ACM 32(2), 296–313 (1985)
Xiao, M., Nagamochi, H.: An improved exact algorithm for undirected feedback vertex set. J. Comb. Optim. 30(2), 214–241 (2014). https://doi.org/10.1007/s10878-014-9737-x
Acknowledges
The authors are very indebted to Professor Xujin Chen and Professor Xiaodong Hu for their invaluable suggestions and comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Tang, Z., Tang, Y., Diao, Z. (2021). On the Feedback Number of 3-Uniform Linear Extremal Hypergraphs. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_54
Download citation
DOI: https://doi.org/10.1007/978-3-030-92681-6_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92680-9
Online ISBN: 978-3-030-92681-6
eBook Packages: Computer ScienceComputer Science (R0)