A LP-based Approximation Algorithm for generalized Traveling Salesperson Path Problem | SpringerLink
Skip to main content

A LP-based Approximation Algorithm for generalized Traveling Salesperson Path Problem

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Abstract

Hamiltonian path problem is one of the fundamental problems in graph theory, the aim is to find a path in the graph that visits each vertex exactly once. In this paper, we consider a generalizedized problem: given a complete weighted undirected graph \(G=(V,E,c)\), two specified vertices s and t, let \(V^{\prime }\) and \(E^{\prime }\) be subsets of V and E,  respectively. We aim to find an s-t path which visits each vertex of \(V^{\prime }\) and each edge of \(E^{\prime }\) exactly once with minimum cost. Based on LP rounding technique, we propose a \(\frac{9-\sqrt{33}}{2}\)-approximation algorithm.

X. Zhang–This research is supported or partially supported by the National Natural Science Foundation of China (Grant Nos. 11871280 and 11871081) and Qinglan Project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, H.-C., Kleinberg, R., Shmoys, D.-B.: Improving Christofides’ algorithm for the \(s\)-\(t\) path TSP. J. ACM 62(5), 34 (2015)

    Article  MathSciNet  Google Scholar 

  2. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Carnegie-Mellon University of Pittsburgh Pa Management Sciences Research Group (1976)

    Google Scholar 

  3. Cunningham, W.-H.: Testing membership in matroid polyhedra. J. Comb. Theory Ser. B 36(2), 161–188 (1984)

    Article  MathSciNet  Google Scholar 

  4. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954)

    MathSciNet  MATH  Google Scholar 

  5. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1(1), 127–136 (1971)

    Article  MathSciNet  Google Scholar 

  6. Edmonds, J., Johnson, E.-L.: Matching, Euler tours and the Chinese postman. Math. Program. 5(1), 88–124 (1973)

    Article  MathSciNet  Google Scholar 

  7. Frederickson, G.-N.: Approximation algorithms for some postman problems. J. ACM 26, 538–554 (1979)

    Article  MathSciNet  Google Scholar 

  8. Fumei, L., Alantha, N.: Traveling salesman path problems. Math. Progrom. 13, 39–59 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

    Article  MathSciNet  Google Scholar 

  10. Gutin, G., Punnen, A.: The Traveling Salesman Problem and its Variations. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  11. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation algorithms with bounded performance guarantees for the clustered traveling salesman problem. Algorithmica 28, 422–437 (2000)

    Article  MathSciNet  Google Scholar 

  12. Hoogeveen, J.-A.: Analysis of Christofides’ heuristic: some paths are more difficult than cycles. Oper. Res. Lett. 10, 291–295 (1991)

    Article  MathSciNet  Google Scholar 

  13. Karlin, A.-R., Klein, N., Gharan, S.-O.: A (slightly) improved approximation algorithm for metric TSP. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 32–45 (2021)

    Google Scholar 

  14. Karp, R.-M.: Reducibility among combinatorial problems. Complex. Comput. Comput. 2, 85–103 (1972)

    Article  MathSciNet  Google Scholar 

  15. Mömke, T., Svensson, O.: Removing and adding edges for the traveling salesman problem. J. ACM 63(1), 2 (2016)

    Article  MathSciNet  Google Scholar 

  16. Mucha, M.: 13/9-approximation for graphic TSP. Theory Comput. Syst. 55, 640–657 (2014)

    Article  MathSciNet  Google Scholar 

  17. Gharan, S.-O., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem (2011)

    Google Scholar 

  18. Sahni, S., Gonzales, T.: \(P\)-complete approximation problems. J. ACM 23(3), 555–565 (1976)

    Article  MathSciNet  Google Scholar 

  19. Sebő, A.: Eight-Fifth approximation for the path TSP. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 362–374. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36694-9_31

    Chapter  Google Scholar 

  20. Sebö, A., Van Zuylen, A.: The salesman’s improved paths through forests. J. ACM 66(4), 28 (2019)

    Article  MathSciNet  Google Scholar 

  21. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-Approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica 34(5), 597–629 (2014). https://doi.org/10.1007/s00493-014-2960-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Traub, V., Vygen, J.: Approaching \(\frac{3}{2}\) for the \(s\)-\(t\) path TSP. J. ACM 66(2), 14 (2019)

    Article  MathSciNet  Google Scholar 

  23. Zenklusen, R.-A.: \(1.5\)-Approximation for path TSP. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1539–1549 (2019)

    Google Scholar 

  24. Zhang, X., Du, D., Gutin, G., Ming, Q., Sun, J.: Approximation algorithms for general cluster routing problem. In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H. (eds.) COCOON 2020. LNCS, vol. 12273, pp. 472–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58150-3_38

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J., Gutin, G., Zhang, X. (2021). A LP-based Approximation Algorithm for generalized Traveling Salesperson Path Problem. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics