Multi-Domain Adversarial Balancing for the Estimation of Individual Treatment Effect | SpringerLink
Skip to main content

Multi-Domain Adversarial Balancing for the Estimation of Individual Treatment Effect

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1516))

Included in the following conference series:

  • 2722 Accesses

Abstract

Estimating individual treatment effects (ITE) from observational data is an important topic in many fields. However, this task is challenging because data from observational studies has selection bias: the treatment assigned to an individual related to that individual’s properties. In this paper, we proposed multi-domain adversarial balancing (MDAB), a method incorporates multi-domain adversarial learning with context-aware sample balancing to reduce the selection bias. It simultaneously learns confounder weights and sample weights through an adversarial learning architecture to generate a balanced representation. MDAB is empirically validated in public benchmark datasets, the results demonstrate that MDAB outperforms various state-of-the-art methods in both binary and multiple treatment settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. J. Am. Stat. Assoc 100(469), 322–331 (2005)

    Article  MathSciNet  Google Scholar 

  2. Austin, P.C.: An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav. Res. 46(3), 399–424 (2011)

    Article  Google Scholar 

  3. Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: International Conference on Machine Learning, pp. 3020–3029. PMLR (2016)

    Google Scholar 

  4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  5. Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: International Conference on Machine Learning, pp. 3076–3085. PMLR (2017)

    Google Scholar 

  6. Hassanpour, N., Greiner, R.: Counterfactual regression with importance sampling weights. In: IJCAI, pp. 5880–5887 (2019)

    Google Scholar 

  7. Hassanpour, N., Greiner, R.: Learning disentangled representations for counterfactual regression. In: International Conference on Learning Representations (2019)

    Google Scholar 

  8. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)

    Article  MathSciNet  Google Scholar 

  9. Schwab, P., Linhardt, L., Karlen, W.: Perfect match: a simple method for learning representations for counterfactual inference with neural networks (2018). arXiv preprint arXiv:1810.00656

  10. Hill, J.L.: Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20(1), 217–240 (2011)

    Article  MathSciNet  Google Scholar 

  11. Dorie, V.: Non-parametrics for causal inference (2016)

    Google Scholar 

  12. LaLonde, R.J.: Evaluating the econometric evaluations of training programs with experimental data. Am. Econ. Rev. 76, 604–620 (1986)

    Google Scholar 

  13. Crump, R.K., Hotz, V.J., Imbens, G.W., Mitnik, O.A.: Nonparametric tests for treatment effect heterogeneity. Rev. Econ. Stat. 90(3), 389–405 (2008)

    Article  Google Scholar 

  14. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  15. Wager, S., Athey, S.: Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc 113(523), 1228–1242 (2018)

    Article  MathSciNet  Google Scholar 

  16. Yoon, J., Jordon, J., Van Der Schaar, M.: Ganite: estimation of individualized treatment effects using generative adversarial nets. In: International Conference on Learning Representations (2018)

    Google Scholar 

  17. Schwab, P., Linhardt, L., Bauer, S., Buhmann, J.M., Karlen, W.: Learning counterfactual representations for estimating individual dose-response curves. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5612–5619 (2020)

    Google Scholar 

  18. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peifei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, P., Li, Z., Ogino, M. (2021). Multi-Domain Adversarial Balancing for the Estimation of Individual Treatment Effect. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1516. Springer, Cham. https://doi.org/10.1007/978-3-030-92307-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92307-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92306-8

  • Online ISBN: 978-3-030-92307-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics