Multi-Domain Adversarial Balancing for the Estimation of Individual Treatment Effect | SpringerLink
Skip to main content

Multi-Domain Adversarial Balancing for the Estimation of Individual Treatment Effect

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1516))

Included in the following conference series:

Abstract

Estimating individual treatment effects (ITE) from observational data is an important topic in many fields. However, this task is challenging because data from observational studies has selection bias: the treatment assigned to an individual related to that individual’s properties. In this paper, we proposed multi-domain adversarial balancing (MDAB), a method incorporates multi-domain adversarial learning with context-aware sample balancing to reduce the selection bias. It simultaneously learns confounder weights and sample weights through an adversarial learning architecture to generate a balanced representation. MDAB is empirically validated in public benchmark datasets, the results demonstrate that MDAB outperforms various state-of-the-art methods in both binary and multiple treatment settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. J. Am. Stat. Assoc 100(469), 322–331 (2005)

    Article  MathSciNet  Google Scholar 

  2. Austin, P.C.: An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav. Res. 46(3), 399–424 (2011)

    Article  Google Scholar 

  3. Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: International Conference on Machine Learning, pp. 3020–3029. PMLR (2016)

    Google Scholar 

  4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  5. Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: International Conference on Machine Learning, pp. 3076–3085. PMLR (2017)

    Google Scholar 

  6. Hassanpour, N., Greiner, R.: Counterfactual regression with importance sampling weights. In: IJCAI, pp. 5880–5887 (2019)

    Google Scholar 

  7. Hassanpour, N., Greiner, R.: Learning disentangled representations for counterfactual regression. In: International Conference on Learning Representations (2019)

    Google Scholar 

  8. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)

    Article  MathSciNet  Google Scholar 

  9. Schwab, P., Linhardt, L., Karlen, W.: Perfect match: a simple method for learning representations for counterfactual inference with neural networks (2018). arXiv preprint arXiv:1810.00656

  10. Hill, J.L.: Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20(1), 217–240 (2011)

    Article  MathSciNet  Google Scholar 

  11. Dorie, V.: Non-parametrics for causal inference (2016)

    Google Scholar 

  12. LaLonde, R.J.: Evaluating the econometric evaluations of training programs with experimental data. Am. Econ. Rev. 76, 604–620 (1986)

    Google Scholar 

  13. Crump, R.K., Hotz, V.J., Imbens, G.W., Mitnik, O.A.: Nonparametric tests for treatment effect heterogeneity. Rev. Econ. Stat. 90(3), 389–405 (2008)

    Article  Google Scholar 

  14. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  15. Wager, S., Athey, S.: Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc 113(523), 1228–1242 (2018)

    Article  MathSciNet  Google Scholar 

  16. Yoon, J., Jordon, J., Van Der Schaar, M.: Ganite: estimation of individualized treatment effects using generative adversarial nets. In: International Conference on Learning Representations (2018)

    Google Scholar 

  17. Schwab, P., Linhardt, L., Bauer, S., Buhmann, J.M., Karlen, W.: Learning counterfactual representations for estimating individual dose-response curves. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5612–5619 (2020)

    Google Scholar 

  18. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peifei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, P., Li, Z., Ogino, M. (2021). Multi-Domain Adversarial Balancing for the Estimation of Individual Treatment Effect. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1516. Springer, Cham. https://doi.org/10.1007/978-3-030-92307-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92307-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92306-8

  • Online ISBN: 978-3-030-92307-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics