Hybrid DE-MLP-Based Modeling Technique for Prediction of Alloying Element Proportions and Process Parameters | SpringerLink
Skip to main content

Hybrid DE-MLP-Based Modeling Technique for Prediction of Alloying Element Proportions and Process Parameters

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13111))

Included in the following conference series:

  • 2072 Accesses

Abstract

The inherent complexity in obtaining the desired microstructure in metals to achieve a specific set of mechanical properties makes the selection of an optimum level of alloy proportions and the heat treatment process parameters a challenging task. The differential evolution (DE) is a population-based evolutionary algorithm, which is capable of finding the optimal solution of non-differentiable, non-linear, and discontinuous functions. In this paper, a set of experimental data, obtained from literature, is used to train a multilayer perceptron (MLP) to predict the mechanical property (i.e., Vickers hardness number (VHN)) of austempered ductile iron (ADI), for a given set of input process parameters. A novel hybrid DE-MLP-based model is proposed to predict the input process parameters, i.e., the alloying element proportions and the heat treatment parameters, to produce ADI with a specific mechanical property. The performance of DE-MLP-based model in terms of accuracy, effect of population size, number of generations, and computational efficiency are discussed. With extensive simulation results, it is shown that the MLP model can predict VHN with a low mean absolute percent error (MAPE) of 0.21. With only 10 individuals, the DE algorithm is able to generate a feasible solution containing the input process parameters in less than 10 generations. ADI with a desired value of VHN can be produced using the alloying element proportions and heat treatment process parameters predicted by the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arafeh, L., Singh, H., Putatunda, S.K.: A neuro fuzzy logic approach to material processing. IEEE Trans. Syst., Man Cybern. Syst Part C 29(3), 362–370 (1999)

    Google Scholar 

  2. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  3. Haykin, S.: Neural Networks, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  4. Jiang, L.L., Maskell, D.L., Patra, J.C.: Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm. Appl. Energ. 112, 185–193 (2013)

    Article  Google Scholar 

  5. Keough, J.: Austempered Ductile Iron (ADI) - a green alternative. American Foundry Society, Schaumburg (2011). www.afsinc.org

  6. Patra, J.C.: Neural network-based model for dual-junction solar cells. Prog. Photovoltaics Res. Appl. 19(1), 33–44 (2011)

    Article  Google Scholar 

  7. Patra, J.C., Kot, A.C.: Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans. Syst. Man Cybern. Part B 32(4), 505–511 (2002)

    Article  Google Scholar 

  8. PourAsiabi, H., PourAsiabi, H., AmirZadeh, Z., BabaZadeh, M.: Development a multi-layer perceptron artificial neural network model to estimate the Vickers hardness of Mn-Ni-Cu-Mo austempered ductile iron. Mater. Des. 35, 782–789 (2012)

    Article  Google Scholar 

  9. Savangouder, R.V., Patra, J.C., Bornand, C.: Artificial neural network-based modeling for prediction of hardness of austempered ductile iron. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) Neural Information Processing, pp. 405–413. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  10. Storn, R., Price, K.: Differential evolution - simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  11. Varela, D., Santos, J.: A hybrid evolutionary algorithm for protein structure prediction using the face-centered cubic lattice model. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S.M. (eds.) Neural Information Processing, pp. 628–638. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  12. Yescas, M.A.: Prediction of the Vickers hardness in austempered ductile irons using neural networks. Int. J. Cast Met. Res. 15(5), 513–521 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra V. Savangouder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Savangouder, R.V., Patra, J.C., Palanisamy, S. (2021). Hybrid DE-MLP-Based Modeling Technique for Prediction of Alloying Element Proportions and Process Parameters. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13111. Springer, Cham. https://doi.org/10.1007/978-3-030-92273-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92273-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92272-6

  • Online ISBN: 978-3-030-92273-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics