Towards Better Dermoscopic Image Feature Representation Learning for Melanoma Classification | SpringerLink
Skip to main content

Towards Better Dermoscopic Image Feature Representation Learning for Melanoma Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13111))

Included in the following conference series:

Abstract

Deep learning-based melanoma classification with dermoscopic images has recently shown great potential in automatic early-stage melanoma diagnosis. However, limited by the significant data imbalance and obvious extraneous artifacts, i.e., the hair and ruler markings, discriminative feature extraction from dermoscopic images is very challenging. In this study, we seek to resolve these problems respectively towards better representation learning for lesion features. Specifically, a GAN-based data augmentation (GDA) strategy is adapted to generate synthetic melanoma-positive images, in conjunction with the proposed implicit hair denoising (IHD) strategy. Wherein the hair-related representations are implicitly disentangled via an auxiliary classifier network and reversely sent to the melanoma-feature extraction backbone for better melanoma-specific representation learning. Furthermore, to train the IHD module, the hair noises are additionally labeled on the ISIC2020 dataset, making it the first large-scale dermoscopic dataset with annotation of hair-like artifacts. Extensive experiments demonstrate the superiority of the proposed framework as well as the effectiveness of each component. The improved dataset will be publicly available after the review.

C. Yu and M. Tang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The datasets generated and/or analyzed in this paper can be accessed from the corresponding author upon reasonable requests.

References

  1. Jerant, A.F., Johnson, J.T., et al.: Early detection and treatment of skin cancer. Am. Fam. Physician 62(2), 357–368 (2000)

    Google Scholar 

  2. Divito, S.J., Ferris, L.K.: Advances and short comings in the early diagnosis of melanoma. Melanoma Res. 20(6), 450–458 (2010)

    Article  Google Scholar 

  3. Siegel, R.L., Miller, K.D., et al.: Cancer statistics, 2020. CA: Cancer J. Clin. 70(1), 7–30 (2020)

    Google Scholar 

  4. Fitzgerald, R.C.: Big data is crucial to the early detection of cancer. Nat. Med. 26(1), 19–20 (2020)

    Article  Google Scholar 

  5. Yan, J., et al.: Hierarchical attention guided framework for multi-resolution collaborative whole slide image segmentation. In: de Bruijne, M. (ed.) MICCAI 2021. LNCS, vol. 12908, pp. 153–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_15

    Chapter  Google Scholar 

  6. Xu, Z., et al.: Noisy labels are treasure: mean-teacher-assisted confident learning for hepatic vessel segmentation. In: de Bruijne, M. (ed.) MICCAI 2021. LNCS, vol. 12901, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_1

    Chapter  Google Scholar 

  7. Xu, Z., Yan, J., Luo, J., Li, X., Jagadeesan, J.: Unsupervised multimodal image registration with adaptative gradient guidance. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1225–1229. IEEE (2021)

    Google Scholar 

  8. Xu, Z., Luo, J., Yan, J., Li, X., Jayender, J.: F3RNet: full-resolution residual registration network for deformable image registration. Int. J. Comput. Assist. Radiol. Surg. 16(6), 923–932 (2021)

    Article  Google Scholar 

  9. Ahmed, S.A.A., Yanikoğlu, B., et al.: Skin lesion classification with deep CNN ensembles. In: 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE (2020)

    Google Scholar 

  10. Reisinho, J., Coimbra, M., et al.: Deep convolutional neural network ensembles for multi-classification of skin lesions from dermoscopic and clinical images. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1940–1943. IEEE (2020)

    Google Scholar 

  11. Rotemberg, V., et al.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci. Data 8(1), 1–8 (2021)

    Google Scholar 

  12. Bisla, D., et al.: Towards automated melanoma detection with deep learning: data purification and augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  13. Ortiz, J.D.C., Ticliahuanca, L.F.M., Moscol, M.E.R., Requejo, W.G.S.: Uso de algoritmos de machine learning para el diagnóstico de melanomas (2021). https://hdl.handle.net/11042/4949

  14. Xu, Z., et al.: Adversarial uni- and multi-modal stream networks for multimodal image registration. In: Martel, A.L. (ed.) MICCAI 2020. LNCS, vol. 12263, pp. 222–232. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_22

    Chapter  Google Scholar 

  15. Croskerry, P.: Achieving quality in clinical decision making: cognitive strategies and detection of bias. Acad. Emerg. Med. 9(11), 1184–1204 (2002)

    Article  Google Scholar 

  16. Khan, A.H., Iskandar, D., et al.: Classification of skin lesion with hair and artifacts removal using black-hat morphology and total variation. Int. J. Comput. Digit. Syst. 10, 597–604 (2021)

    Article  Google Scholar 

  17. Ma, Z., Yin, S.: Deep attention network for melanoma detection improved by color constancy. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 123–127. IEEE (2018)

    Google Scholar 

  18. Zhang, R.: Melanoma detection using convolutional neural network. In: 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp. 75–78. IEEE (2021)

    Google Scholar 

  19. Low, K.O., Johari, A.: Skin lesion analysis for automatic melanoma detection: ISIC challenge 2019.https://challenge.isic-archive.com/leaderboards/2019. Accessed 22 June 2021

  20. Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: Color and Imaging Conference. vol. 1, pp. 37–41. Society for Imaging Science and Technology (2004)

    Google Scholar 

  21. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Article  Google Scholar 

  22. Ha, Q., Liu, B., Liu, F.: Identifying melanoma images using EfficientNet ensemble: winning solution to the SIIM-ISIC melanoma classification challenge. arXiv preprint arXiv:2010.05351 (2020)

  23. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  24. Arjovsky, M., Chintala, S., et al.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  25. Ganin, Y., Ustinova, E., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–3030 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Mendonça, T., Ferreira, P.M., et al.: PH\(^2\) - a dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437–5440 (2013). https://doi.org/10.1109/EMBC.2013.6610779

  27. Perez, F., Avila, S., et al.: Solo or ensemble? Choosing a CNN architecture for melanoma classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 2775–2783 (2019)

    Google Scholar 

  28. Hasan, M., et al.: Comparative analysis of automatic skin lesion segmentation with two different implementations. arXiv preprint arXiv:1904.03075 (2019)

  29. Bibiloni, P., González-Hidalgo, M., Massanet, S.: Skin hair removal in dermoscopic images using soft color morphology. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 322–326. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59758-4_37

    Chapter  Google Scholar 

  30. Charles, P.: Maryamnadeeme (2019). https://github.com/MaryamNadeem/fakedataproduction

Download references

Acknowledgments

This research was partly supported by the National Natural Science Foundation of China (Grant No. 41876098), the National Key R&D Program of China (Grant No. 2020AAA0108303), and Shenzhen Science and Technology Project (Grant No. JCYJ20200109143041798). Thanks to the tutors of Special Practice of Big Data Courses, who provided valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JiangPeng Yan or Xiu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, C. et al. (2021). Towards Better Dermoscopic Image Feature Representation Learning for Melanoma Classification. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13111. Springer, Cham. https://doi.org/10.1007/978-3-030-92273-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92273-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92272-6

  • Online ISBN: 978-3-030-92273-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics