Efficient Boolean Search over Encrypted Data with Reduced Leakage | SpringerLink
Skip to main content

Efficient Boolean Search over Encrypted Data with Reduced Leakage

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2021 (ASIACRYPT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13092))

Abstract

Encrypted multi-maps enable outsourcing the storage of a multi-map to an untrusted server while maintaining the ability to query privately. We focus on encrypted Boolean multi-maps that support arbitrary Boolean queries over the multi-map. Kamara and Moataz [Eurocrypt’17] presented the first encrypted multi-map, BIEX, that supports CNF queries with optimal communication, worst-case sublinear search time and non-trivial leakage.

We improve on previous work by presenting a new construction \(\mathsf {CNFFilter}\) for CNF queries with significantly less leakage than BIEX, while maintaining both optimal communication and worst-case sublinear search time. As a direct consequence our construction shows additional resistance to leakage-abuse attacks in comparison to prior works. For most CNF queries, \(\mathsf {CNFFilter}\) avoids leaking the result sets for any singleton queries for labels appearing in the CNF query. As an example, for the CNF query of the form \((\ell _1 \vee \ell _2) \wedge \ell _3\), our scheme does not leak the result sizes of queries to \(\ell _1, \ell _2\) or \(\ell _3\) individually. On the other hand, BIEX does leak some of this information. This is just an example of the reduced leakage obtained by \(\mathsf {CNFFilter}\). The core of \(\mathsf {CNFFilter}\) is a new filtering algorithm that performs set intersections with significantly less leakage compared to prior works.

We implement \(\mathsf {CNFFilter}\) and show that \(\mathsf {CNFFilter}\) achieves faster search times and similar communication overhead compared to BIEX at the cost of a small increase in server storage.

For the full version of this paper, please see [38].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    While BIEX considers Boolean searchable encryption, the basic construction is an encrypted Boolean multi-map.

  2. 2.

    In [28], the authors only present a construction for CNF queries. To derive a conjunction scheme, we consider the case where each disjunction clause is a single label.

References

  1. Clusion. https://github.com/orochi89/Clusion

  2. gRPC - an RPC library and framework. https://github.com/grpc/grpc

  3. Natural language toolkit. http://nltk.org

  4. SPAR Pilot Evaluation. MIT Lincoln Laboratory (2015)

    Google Scholar 

  5. Asharov, G., Segev, G., Shahaf, I.: Tight tradeoffs in searchable symmetric encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 407–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_14

    Chapter  MATH  Google Scholar 

  6. Bellare, M., Boldyreva, A., Knudsen, L., Namprempre, C.: On-line ciphers and the hash-CBC constructions. J. Cryptol. 25, 640–679 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_30

    Chapter  Google Scholar 

  8. Blackstone, L., Kamara, S., Moataz, T.: Revisiting leakage abuse attacks. In: NDSS 2020 (2020)

    Google Scholar 

  9. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_30

    Chapter  Google Scholar 

  10. Bost, R.: Sophos: forward secure searchable encryption. In: CCS 2016 (2016)

    Google Scholar 

  11. Bost, R., Fouque, P.-A.: Security-efficiency tradeoffs in searchable encryption - lower bounds and optimal constructions. In: PoPETS 2019 (2019)

    Google Scholar 

  12. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable encryption from constrained cryptographic primitives. In: CCS 2017 (2017)

    Google Scholar 

  13. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable encryption. In: CCS 2015 (2015)

    Google Scholar 

  14. Cash, D., et al.: Dynamic searchable encryption in very-large databases: data structures and implementation. In: NDSS 2014 (2014)

    Google Scholar 

  15. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_20

    Chapter  Google Scholar 

  16. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_20

    Chapter  Google Scholar 

  17. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_33

    Chapter  Google Scholar 

  18. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. J. Comput. Secur. 19, 895–934 (2011)

    Article  Google Scholar 

  19. Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption with optimal locality: achieving sublogarithmic read efficiency. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 371–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_13

    Chapter  Google Scholar 

  20. Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality. In: SIGMOD 2017 (2017)

    Google Scholar 

  21. Demertzis, I., Talapatra, R., Papamanthou, C.: Efficient searchable encryption through compression. In: PVLDB 2018 (2018)

    Google Scholar 

  22. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich queries on encrypted data: beyond exact matches. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 123–145. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24177-7_7

    Chapter  Google Scholar 

  23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009 (2009)

    Google Scholar 

  24. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM 43(3), 431–473 (1996)

    Article  MathSciNet  Google Scholar 

  25. Grubbs, P., Lacharité, M., Minaud, B., Paterson, K.G.: Learning to reconstruct: statistical learning theory and encrypted database attacks. In: IEEE S&P 2019 (2019)

    Google Scholar 

  26. Grubbs, P., Lacharité, M., Minaud, B., Paterson, K.G.: Pump up the volume: practical database reconstruction from volume leakage on range queries. In: CCS 2018 (2018)

    Google Scholar 

  27. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryption: ramification, attack and mitigation. In: NDSS 2012 (2012)

    Google Scholar 

  28. Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case sub-linear complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 94–124. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_4

    Chapter  Google Scholar 

  29. Kamara, S., Moataz, T.: SQL on structurally-encrypted databases. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 149–180. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_6

    Chapter  Google Scholar 

  30. Kamara, S., Moataz, T.: Computationally volume-hiding structured encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 183–213. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_7

    Chapter  Google Scholar 

  31. Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage suppression. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 339–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_12

    Chapter  Google Scholar 

  32. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: CCS 2012 (2012)

    Google Scholar 

  33. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure outsourced databases. In: CCS 2016 (2016)

    Google Scholar 

  34. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22

    Chapter  Google Scholar 

  35. Lacharité, M., Minaud, B., Paterson, K.G.: Improved reconstruction attacks on encrypted data using range query leakage. In: IEEE S&P 2018 (2018)

    Google Scholar 

  36. Miers, I., Mohassel, P.: IO-DSSE: scaling dynamic searchable encryption to millions of indexes by improving locality. In: NDSS 2017 (2017)

    Google Scholar 

  37. Pappas, V., et al.: Blind seer: a scalable private DBMS. In: IEEE S&P 2014 (2014)

    Google Scholar 

  38. Patel, S., Persiano, G., Seo, J.Y., Yeo, K.: Efficient boolean search over encrypted data with reduced leakage. Cryptology ePrint Archive, Report 2021/1227 (2021)

    Google Scholar 

  39. Patel, S., Persiano, G., Yeo, K.: Leakage cell probe model: lower bounds for key-equality mitigation in encrypted multi-maps. In: Crypto 2020 (2020)

    Google Scholar 

  40. Patel, S., Persiano, G., Yeo, K., Yung, M.: Mitigating leakage in secure cloud-hosted data structures: volume-hiding for multi-maps via hashing. In: CCS 2019 (2019)

    Google Scholar 

  41. Porter, M.: The Porter stemming algorithm. https://tartarus.org/martin/PorterStemmer/

  42. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: IEEE S&P 2000 (2000)

    Google Scholar 

  43. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS 2014 (2014)

    Google Scholar 

  44. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power of file-injection attacks on searchable encryption. In: USENIX Security Symposium, pp. 707–720 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvar Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, S., Persiano, G., Seo, J.Y., Yeo, K. (2021). Efficient Boolean Search over Encrypted Data with Reduced Leakage. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13092. Springer, Cham. https://doi.org/10.1007/978-3-030-92078-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92078-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92077-7

  • Online ISBN: 978-3-030-92078-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics