Abstract
A plethora of scholarly knowledge is being published on distributed scholarly infrastructures. Querying a single infrastructure is no longer sufficient for researchers to satisfy information needs. We present a GraphQL-based federated query service for executing distributed queries on numerous, heterogeneous scholarly infrastructures (currently, ORKG, DataCite and GeoNames), thus enabling the integrated retrieval of scholarly content from these infrastructures. Furthermore, we present the methods that enable cross-walks between artefact metadata and artefact content across scholarly infrastructures, specifically DOI-based persistent identification of ORKG artefacts (e.g., ORKG comparisons) and linking ORKG content to third-party semantic resources (e.g., taxonomies, thesauri, ontologies). This type of linking increases interoperability, facilitates the reuse of scholarly knowledge, and enables finding machine actionable scholarly knowledge published by ORKG in global scholarly infrastructures. In summary, we suggest applying the established linked data principles to scholarly knowledge to improve its findability, interoperability, and ultimately reusability, i.e., improve scholarly knowledge FAIR-ness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
References
Ameri, S., Vahdati, S., Lange, C.: Exploiting interlinked research metadata, 3–14, September 2017. https://doi.org/10.1007/978-3-319-67008-9_1
Arya, D., Ha-Thuc, V., Sinha, S.: Personalized federated search at linkedin. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM 2015, New York, NY, USA, pp. 1699–1702. Association for Computing Machinery (2015). https://doi.org/10.1145/2806416.2806615
Ashburner, M., et al.: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–29 (2000)
Asiaee, A.H., Minning, T., Doshi, P., Tarleton, R.L.: A framework for ontology-based question answering with application to parasite immunology. J. Biomed. Semant. 6(1), 31 (2015)
Assante, M., Candela, L., Castelli, D., Manghi, P., Pagano, P.: Science 2.0 repositories: time for a change in scholarly communication. D-Lib Mag. 21, 1–14 (2015). https://doi.org/10.1045/january2015-assante
Auer, S., Stocker, M.: Comparison of scholarly identifier systems (2021). https://doi.org/10.48366/R73210. https://www.orkg.org/orkg/comparison/R73210
Bellini, E., et al.: Interoperability knowledge base for persistent identifiers interoperability framework. In: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, pp. 868–875. IEEE (2012)
Burton, A., et al.: The data-literature interlinking service: towards a common infrastructure for sharing data-article links. Program 51, 75–100 (2017). https://doi.org/10.1108/PROG-06-2016-0048
Burton, A., et al.: The Scholix framework for interoperability in data-literature information exchange. D-Lib Mag. 23, January 2017. https://doi.org/10.1045/january2017-burton
Côté, R., Reisinger, F., Martens, L., Barsnes, H., Vizcaino, J., Hermjakob, H.: The ontology lookup service: bigger and better. Nucleic Acids Res. 38(Suppl\(\_\)2), W155–W160 (2010)
Ding, L., Kolari, P., Ding, Z., Avancha, S.: Using ontologies in the semantic web: a survey. In: Sharman, R., Kishore, R., Ramesh, R. (eds.) Ontologies. Integrated Series in Information Systems, vol. 14, pp. 79–113. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-37022-4_4
Farjana, S.H., Han, S., Mun, D.: Implementation of persistent identification of topological entities based on macro-parametrics approach. J. Comput. Des. Eng. 3(2), 161–177 (2016). https://doi.org/10.1016/j.jcde.2016.01.001
Fenner, M., Aryani, A.: Introducing the PID Graph (2019). https://doi.org/10.5438/JWVF-8A66. https://blog.datacite.org/introducing-the-pid-graph/
Haak, L., Fenner, M., Paglione, L., Pentz, E., Ratner, H.: ORCID: a system to uniquely identify researchers. Learn. Publ. 25, 259–264 (2012). https://doi.org/10.1087/20120404
Hajra, A., Tochtermann, K.: Linking science: approaches for linking scientific publications across different LOD repositories. Int. J. Metadata Semant. Ontol. 12(2–3), 124–141 (2017)
Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering, January 2006
Haris, M.: Comparison of scholarly infrastructures (2021). https://doi.org/10.48366/R73195. https://www.orkg.org/orkg/comparison/R73195
Hendler, J.: Data integration for heterogenous datasets. Big Data 2, 205–215 (2014). https://doi.org/10.1089/big.2014.0068
Iannacone, M., et al.: Developing an ontology for cyber security knowledge graphs, 1–4, April 2015. https://doi.org/10.1145/2746266.2746278
Jaradeh, M.Y., et al.: Open research knowledge graph: next generation infrastructure for semantic scholarly knowledge. In: Proceedings of the 10th International Conference on Knowledge Capture, K-CAP 2019, New York, NY, USA, pp. 243–246. Association for Computing Machinery (2019). https://doi.org/10.1145/3360901.3364435
Jonquet, C., Dzalé-Yeumo, E., Arnaud, E., Larmande, P.: Agroportal: a proposition for ontology-based services in the agronomic domain, June 2015
Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C Candidate Recomm. 11(8) (2017)
Kuhn, T., et al.: Decentralized provenance-aware publishing with nanopublications. PeerJ Comput. Sci. 2, e78 (2016)
Martin, P., Magagna, B., Liao, X., Zhao, Z.: Semantic linking of research infrastructure metadata. In: Zhao, Z., Hellström, M. (eds.) Towards Interoperable Research Infrastructures for Environmental and Earth Sciences. LNCS, vol. 12003, pp. 226–246. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_13
Meadows, A., Haak, L., Brown, J.: Persistent identifiers: the building blocks of the research information infrastructure. Insights UKSG J. 32, March 2019. https://doi.org/10.1629/uksg.457
Mosharraf, M., Taghiyareh, F.: Federated search engine for open educational linked data. Bull. IEEE Tech. Comm. Learn. Technol. 18(6), 6–10 (2016)
Natale, D., et al.: The protein ontology: a structured representation of protein forms and complexes. Nucleic Acids Res. 39, D539–D545 (2010). https://doi.org/10.1093/nar/gkq907
Oelen, A., Jaradeh, M.Y., Stocker, M., Auer, S.: Generate fair literature surveys with scholarly knowledge graphs. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, JCDL 2020, New York, NY, USA, pp. 97–106. Association for Computing Machinery (2020). https://doi.org/10.1145/3383583.3398520
Paskin, N.: Digital object identifier (DOI) system. Encyclopedia of Library and Information Sciences, Technical report (2010)
Peroni, S., Shotton, D.: FaBiO and CiTO: ontologies for describing bibliographic resources and citations. J. Web Semant. 17, 33–43 (2012). https://doi.org/10.1016/j.websem.2012.08.001
Peroni, S., Shotton, D., et al.: The SPAR ontologies. In: Vrandečić, D. (ed.) ISWC 2018. LNCS, vol. 11137, pp. 119–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_8
Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF validation and transformation language. In: Proceedings of the 10th International Conference on Semantic Systems, pp. 32–40 (2014)
Richards, K., White, R., Nicolson, N., Pyle, R.: A beginner’s guide to persistent identifiers. GBIF (2011)
Salatino, A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: Classifying research papers with the computer science ontology. In: International Semantic Web Conference (2018)
Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E., et al.: The computer science ontology: a large-scale taxonomy of research areas. In: Vrandečić, D. (ed.) ISWC 2018. LNCS, vol. 11137, pp. 187–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_12
Sanchez-Pi, N., Martí, L., Bicharra Garcia, A.C.: Improving ontology-based text classification: an occupational health and security application. J. Appl. Logic 17, 48–58 (2016). https://doi.org/10.1016/j.jal.2015.09.008. sOCO13
Santipantakis, G., Kotis, K., Vouros, G.: Ontology-based data integration for event recognition in the maritime domain, July 2015. https://doi.org/10.1145/2797115.2797133
Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M., et al.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L. (ed.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_38
Stocker, M., et al.: Persistent identification of instruments. Data Sci. J. 19, 1–12 (2020). https://doi.org/10.5334/dsj-2020-018
Vatant, B., Wick, M.: Geonames ontology. Dostupné, January 2012. http://www.geonames.org/ontology/ontology_v3
Wilkinson, M.D., et al.: The fair guiding principles for scientific data management and stewardship. Sci. Data 3(1), 1–9 (2016)
Zhang, S., Boukamp, F., Teizer, J.: Ontology-based semantic modeling of construction safety knowledge: towards automated safety planning for job hazard analysis (JHA). Autom. Constr. 52, 29–41 (2015). https://doi.org/10.1016/j.autcon.2015.02.005
Zhou, Y., De, S., Moessner, K.: Implementation of federated query processing on linked data. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 3553–3557 (2013). https://doi.org/10.1109/PIMRC.2013.6666765
Acknowledgment
This work was co-funded by the European Research Council for the project ScienceGRAPH (Grant agreement ID: 819536) and TIB–Leibniz Information Centre for Science and Technology. The authors thank Mohamad Yaser Jaradeh for his valuable input and comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Haris, M., Farfar, K.E., Stocker, M., Auer, S. (2021). Federating Scholarly Infrastructures with GraphQL. In: Ke, HR., Lee, C.S., Sugiyama, K. (eds) Towards Open and Trustworthy Digital Societies. ICADL 2021. Lecture Notes in Computer Science(), vol 13133. Springer, Cham. https://doi.org/10.1007/978-3-030-91669-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-91669-5_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91668-8
Online ISBN: 978-3-030-91669-5
eBook Packages: Computer ScienceComputer Science (R0)