Federating Scholarly Infrastructures with GraphQL | SpringerLink
Skip to main content

Federating Scholarly Infrastructures with GraphQL

  • Conference paper
  • First Online:
Towards Open and Trustworthy Digital Societies (ICADL 2021)

Abstract

A plethora of scholarly knowledge is being published on distributed scholarly infrastructures. Querying a single infrastructure is no longer sufficient for researchers to satisfy information needs. We present a GraphQL-based federated query service for executing distributed queries on numerous, heterogeneous scholarly infrastructures (currently, ORKG, DataCite and GeoNames), thus enabling the integrated retrieval of scholarly content from these infrastructures. Furthermore, we present the methods that enable cross-walks between artefact metadata and artefact content across scholarly infrastructures, specifically DOI-based persistent identification of ORKG artefacts (e.g., ORKG comparisons) and linking ORKG content to third-party semantic resources (e.g., taxonomies, thesauri, ontologies). This type of linking increases interoperability, facilitates the reuse of scholarly knowledge, and enables finding machine actionable scholarly knowledge published by ORKG in global scholarly infrastructures. In summary, we suggest applying the established linked data principles to scholarly knowledge to improve its findability, interoperability, and ultimately reusability, i.e., improve scholarly knowledge FAIR-ness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://orkg.org.

  2. 2.

    https://www.orkg.org/orkg/graphql.

  3. 3.

    https://www.orkg.org/orkg/graphql-federated.

  4. 4.

    https://api.datacite.org/graphql.

  5. 5.

    https://www.geonames.org/.

  6. 6.

    https://datacite.org.

  7. 7.

    https://www.igsn.org.

  8. 8.

    https://www.geonames.org/export/ws-overview.html.

  9. 9.

    https://gitlab.com/TIBHannover/orkg/orkg-notebooks/-/blob/master/graphql/COVID-19_R0_estimate/COVID-19_R0_meta-data_analysis.ipynb.

  10. 10.

    https://www.orkg.org/orkg/templates.

  11. 11.

    https://www.orkg.org/orkg/class/DCLocation.

  12. 12.

    https://schema.datacite.org.

  13. 13.

    https://support.datacite.org/docs.

  14. 14.

    https://www.openaire.eu/.

  15. 15.

    https://www.wikidata.org/wiki/Wikidata:Main_Page.

  16. 16.

    https://zenodo.org/.

References

  1. Ameri, S., Vahdati, S., Lange, C.: Exploiting interlinked research metadata, 3–14, September 2017. https://doi.org/10.1007/978-3-319-67008-9_1

  2. Arya, D., Ha-Thuc, V., Sinha, S.: Personalized federated search at linkedin. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM 2015, New York, NY, USA, pp. 1699–1702. Association for Computing Machinery (2015). https://doi.org/10.1145/2806416.2806615

  3. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–29 (2000)

    Article  Google Scholar 

  4. Asiaee, A.H., Minning, T., Doshi, P., Tarleton, R.L.: A framework for ontology-based question answering with application to parasite immunology. J. Biomed. Semant. 6(1), 31 (2015)

    Article  Google Scholar 

  5. Assante, M., Candela, L., Castelli, D., Manghi, P., Pagano, P.: Science 2.0 repositories: time for a change in scholarly communication. D-Lib Mag. 21, 1–14 (2015). https://doi.org/10.1045/january2015-assante

  6. Auer, S., Stocker, M.: Comparison of scholarly identifier systems (2021). https://doi.org/10.48366/R73210. https://www.orkg.org/orkg/comparison/R73210

  7. Bellini, E., et al.: Interoperability knowledge base for persistent identifiers interoperability framework. In: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, pp. 868–875. IEEE (2012)

    Google Scholar 

  8. Burton, A., et al.: The data-literature interlinking service: towards a common infrastructure for sharing data-article links. Program 51, 75–100 (2017). https://doi.org/10.1108/PROG-06-2016-0048

    Article  Google Scholar 

  9. Burton, A., et al.: The Scholix framework for interoperability in data-literature information exchange. D-Lib Mag. 23, January 2017. https://doi.org/10.1045/january2017-burton

  10. Côté, R., Reisinger, F., Martens, L., Barsnes, H., Vizcaino, J., Hermjakob, H.: The ontology lookup service: bigger and better. Nucleic Acids Res. 38(Suppl\(\_\)2), W155–W160 (2010)

    Google Scholar 

  11. Ding, L., Kolari, P., Ding, Z., Avancha, S.: Using ontologies in the semantic web: a survey. In: Sharman, R., Kishore, R., Ramesh, R. (eds.) Ontologies. Integrated Series in Information Systems, vol. 14, pp. 79–113. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-37022-4_4

    Chapter  Google Scholar 

  12. Farjana, S.H., Han, S., Mun, D.: Implementation of persistent identification of topological entities based on macro-parametrics approach. J. Comput. Des. Eng. 3(2), 161–177 (2016). https://doi.org/10.1016/j.jcde.2016.01.001

    Article  Google Scholar 

  13. Fenner, M., Aryani, A.: Introducing the PID Graph (2019). https://doi.org/10.5438/JWVF-8A66. https://blog.datacite.org/introducing-the-pid-graph/

  14. Haak, L., Fenner, M., Paglione, L., Pentz, E., Ratner, H.: ORCID: a system to uniquely identify researchers. Learn. Publ. 25, 259–264 (2012). https://doi.org/10.1087/20120404

    Article  Google Scholar 

  15. Hajra, A., Tochtermann, K.: Linking science: approaches for linking scientific publications across different LOD repositories. Int. J. Metadata Semant. Ontol. 12(2–3), 124–141 (2017)

    Article  Google Scholar 

  16. Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering, January 2006

    Google Scholar 

  17. Haris, M.: Comparison of scholarly infrastructures (2021). https://doi.org/10.48366/R73195. https://www.orkg.org/orkg/comparison/R73195

  18. Hendler, J.: Data integration for heterogenous datasets. Big Data 2, 205–215 (2014). https://doi.org/10.1089/big.2014.0068

    Article  Google Scholar 

  19. Iannacone, M., et al.: Developing an ontology for cyber security knowledge graphs, 1–4, April 2015. https://doi.org/10.1145/2746266.2746278

  20. Jaradeh, M.Y., et al.: Open research knowledge graph: next generation infrastructure for semantic scholarly knowledge. In: Proceedings of the 10th International Conference on Knowledge Capture, K-CAP 2019, New York, NY, USA, pp. 243–246. Association for Computing Machinery (2019). https://doi.org/10.1145/3360901.3364435

  21. Jonquet, C., Dzalé-Yeumo, E., Arnaud, E., Larmande, P.: Agroportal: a proposition for ontology-based services in the agronomic domain, June 2015

    Google Scholar 

  22. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C Candidate Recomm. 11(8) (2017)

    Google Scholar 

  23. Kuhn, T., et al.: Decentralized provenance-aware publishing with nanopublications. PeerJ Comput. Sci. 2, e78 (2016)

    Article  Google Scholar 

  24. Martin, P., Magagna, B., Liao, X., Zhao, Z.: Semantic linking of research infrastructure metadata. In: Zhao, Z., Hellström, M. (eds.) Towards Interoperable Research Infrastructures for Environmental and Earth Sciences. LNCS, vol. 12003, pp. 226–246. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_13

    Chapter  Google Scholar 

  25. Meadows, A., Haak, L., Brown, J.: Persistent identifiers: the building blocks of the research information infrastructure. Insights UKSG J. 32, March 2019. https://doi.org/10.1629/uksg.457

  26. Mosharraf, M., Taghiyareh, F.: Federated search engine for open educational linked data. Bull. IEEE Tech. Comm. Learn. Technol. 18(6), 6–10 (2016)

    Google Scholar 

  27. Natale, D., et al.: The protein ontology: a structured representation of protein forms and complexes. Nucleic Acids Res. 39, D539–D545 (2010). https://doi.org/10.1093/nar/gkq907

  28. Oelen, A., Jaradeh, M.Y., Stocker, M., Auer, S.: Generate fair literature surveys with scholarly knowledge graphs. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, JCDL 2020, New York, NY, USA, pp. 97–106. Association for Computing Machinery (2020). https://doi.org/10.1145/3383583.3398520

  29. Paskin, N.: Digital object identifier (DOI) system. Encyclopedia of Library and Information Sciences, Technical report (2010)

    Google Scholar 

  30. Peroni, S., Shotton, D.: FaBiO and CiTO: ontologies for describing bibliographic resources and citations. J. Web Semant. 17, 33–43 (2012). https://doi.org/10.1016/j.websem.2012.08.001

    Article  Google Scholar 

  31. Peroni, S., Shotton, D., et al.: The SPAR ontologies. In: Vrandečić, D. (ed.) ISWC 2018. LNCS, vol. 11137, pp. 119–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_8

    Chapter  Google Scholar 

  32. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF validation and transformation language. In: Proceedings of the 10th International Conference on Semantic Systems, pp. 32–40 (2014)

    Google Scholar 

  33. Richards, K., White, R., Nicolson, N., Pyle, R.: A beginner’s guide to persistent identifiers. GBIF (2011)

    Google Scholar 

  34. Salatino, A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: Classifying research papers with the computer science ontology. In: International Semantic Web Conference (2018)

    Google Scholar 

  35. Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E., et al.: The computer science ontology: a large-scale taxonomy of research areas. In: Vrandečić, D. (ed.) ISWC 2018. LNCS, vol. 11137, pp. 187–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_12

    Chapter  Google Scholar 

  36. Sanchez-Pi, N., Martí, L., Bicharra Garcia, A.C.: Improving ontology-based text classification: an occupational health and security application. J. Appl. Logic 17, 48–58 (2016). https://doi.org/10.1016/j.jal.2015.09.008. sOCO13

  37. Santipantakis, G., Kotis, K., Vouros, G.: Ontology-based data integration for event recognition in the maritime domain, July 2015. https://doi.org/10.1145/2797115.2797133

  38. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M., et al.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L. (ed.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_38

    Chapter  Google Scholar 

  39. Stocker, M., et al.: Persistent identification of instruments. Data Sci. J. 19, 1–12 (2020). https://doi.org/10.5334/dsj-2020-018

    Article  Google Scholar 

  40. Vatant, B., Wick, M.: Geonames ontology. Dostupné, January 2012. http://www.geonames.org/ontology/ontology_v3

  41. Wilkinson, M.D., et al.: The fair guiding principles for scientific data management and stewardship. Sci. Data 3(1), 1–9 (2016)

    Article  Google Scholar 

  42. Zhang, S., Boukamp, F., Teizer, J.: Ontology-based semantic modeling of construction safety knowledge: towards automated safety planning for job hazard analysis (JHA). Autom. Constr. 52, 29–41 (2015). https://doi.org/10.1016/j.autcon.2015.02.005

    Article  Google Scholar 

  43. Zhou, Y., De, S., Moessner, K.: Implementation of federated query processing on linked data. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 3553–3557 (2013). https://doi.org/10.1109/PIMRC.2013.6666765

Download references

Acknowledgment

This work was co-funded by the European Research Council for the project ScienceGRAPH (Grant agreement ID: 819536) and TIB–Leibniz Information Centre for Science and Technology. The authors thank Mohamad Yaser Jaradeh for his valuable input and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Haris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haris, M., Farfar, K.E., Stocker, M., Auer, S. (2021). Federating Scholarly Infrastructures with GraphQL. In: Ke, HR., Lee, C.S., Sugiyama, K. (eds) Towards Open and Trustworthy Digital Societies. ICADL 2021. Lecture Notes in Computer Science(), vol 13133. Springer, Cham. https://doi.org/10.1007/978-3-030-91669-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91669-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91668-8

  • Online ISBN: 978-3-030-91669-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics