Evolving Large Scale Prediction Models for Vehicle Volume Forecasting in Service Stations | SpringerLink
Skip to main content

Evolving Large Scale Prediction Models for Vehicle Volume Forecasting in Service Stations

  • Conference paper
  • First Online:
Artificial Intelligence XXXVIII (SGAI-AI 2021)

Abstract

Resource Planning and Service Optimization for operational efficiency constitutes a major factor in the service industry. Internally most of it is dependent on the accuracy of the forecasted demand for the service, which is used to proactively plan resources to match expected demand. In this paper, our focus is on a real-world scenario of vehicle volume forecasting in service stations. Previous work has explored a genetic algorithm (GA) to evolve a regression model based on Neural Networks. Our focus here is to extend on this and show that GA based approach can be also used to evolve other popular regression models for this problem that are widely used in machine learning literature. Each of these techniques considers the historical vehicle volume data along with other correlated data, such as weather, and can have its own set of model parameters as well as other parameters related to data filtration, correction, and feature selections. All of these parameters require proper tuning to achieve the best forecasting accuracy. This can be a challenging task, particularly where different prediction models need to be built for different stations and for different periods, potentially resulting in hundreds of models being built. Manual tuning can be time-consuming, and most importantly, sub-optimal. Our results show that GA can be successfully used to automate the optimization of many popular machine learning models for large-scale vehicle volume forecasting, and more importantly can provide better accuracy than traditionally used manual tuning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainslie, R., McCall, J., Shakya, S., Owusu, G.: Predictive planning with neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2110–2117. IEEE (2016)

    Google Scholar 

  2. Ashraf, A., Baldwin, D.: Vehicle detection system. U.S. patent no. 8,157,219 (2012)

    Google Scholar 

  3. Awad, M., Khanna, R.: Support vector regression. In: Efficient Learning Machines, pp. 67–80. Apress, Berkeley, CA (2015). https://doi.org/10.1007/978-1-4302-5990-9_4

    Chapter  Google Scholar 

  4. Bai, J., Ng, S.: Forecasting economic time series using targeted predictors. J. Econometrics 146(2), 304–317 (2008)

    Article  MathSciNet  Google Scholar 

  5. Balwani, S.S.V.: Operational efficiency through resource planning optimization and work process improvement. Ph.D. thesis, Massachusetts Institute of Technology (2012)

    Google Scholar 

  6. Dybowski, R., Gant, V., Weller, P., Chang, R.: Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. Lancet 347(9009), 1146–1150 (1996)

    Article  Google Scholar 

  7. Ekici, B.B., Aksoy, U.T.: Prediction of building energy consumption by using artificial neural networks. Adv. Eng. Softw. 40(5), 356–362 (2009)

    Article  Google Scholar 

  8. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3, 95–99 (1988). https://doi.org/10.1023/A:1022602019183

    Article  Google Scholar 

  9. Huang, J., Perry, M.: A semi-empirical approach using gradient boosting and k-nearest neighbors regression for gefcom2014 probabilistic solar power forecasting. Int. J. Forecast. 32(3), 1081–1086 (2016)

    Article  Google Scholar 

  10. Huang, Y.: RFID based parking management system. U.S. patent no. 7,973,641 (2011)

    Google Scholar 

  11. Kaastra, I., Boyd, M.S.: Forecasting futures trading volume using neural networks. J. Futures Markets (1986–1998) 15(18), 953 (1995)

    Google Scholar 

  12. Khargharia, H.S., Santana, R., Shakya, S., Ainslie, R., Owusu, G.: Investigating RNNs for vehicle volume forecasting in service stations. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2625–2632. IEEE (2020)

    Google Scholar 

  13. Khargharia, H.S., Shakya, S., Ainslie, R., AlShizawi, S., Owusu, G.: Predicting demand in IoT enabled service stations. In: 2019 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), pp. 81–87. IEEE (2019)

    Google Scholar 

  14. Khargharia, H.S., Shakya, S., Ainslie, R., Owusu, G.: Evolving prediction models with genetic algorithm to forecast vehicle volume in a service station (best application paper). In: Bramer, M., Petridis, M. (eds.) SGAI 2019. LNCS (LNAI), vol. 11927, pp. 167–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34885-4_14

    Chapter  Google Scholar 

  15. Lawrence, R.: Using neural networks to forecast stock market prices. University of Manitoba, vol. 333, pp. 2006–2013 (1997)

    Google Scholar 

  16. Madanhire, I., Mbohwa, C.: Enterprise resource planning (ERP) in improving operational efficiency: case study. Procedia CIRP 40, 225–229 (2016)

    Article  Google Scholar 

  17. Majdi, A., Beiki, M.: Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses. Int. J. Rock Mech. Min. Sci. 47(2), 246–253 (2010)

    Article  Google Scholar 

  18. Maltamo, M., Kangas, A.: Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution. Can. J. For. Res. 28(8), 1107–1115 (1998)

    Article  Google Scholar 

  19. Mitchell, T.: Machine Learning (1997)

    Google Scholar 

  20. Nava, N., Di Matteo, T., Aste, T.: Financial time series forecasting using empirical mode decomposition and support vector regression. Risks 6(1), 7 (2018)

    Article  Google Scholar 

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Petrovski, A., Shakya, S., McCall, J.: Optimising cancer chemotherapy using an estimation of distribution algorithm and genetic algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 413–418 (2006)

    Google Scholar 

  23. Plakandaras, V., Gupta, R., Gogas, P., Papadimitriou, T.: Forecasting the us real house price index. Econ. Model. 45, 259–267 (2015)

    Article  Google Scholar 

  24. Reeves, C.R.: Genetic algorithms. In: Handbook of Metaheuristics, pp. 109–139. Springer, Heidelberg (2010)

    Google Scholar 

  25. Riedmiller, M., Braun, H.: RPROP-a fast adaptive learning algorithm. In: Proceedings of ISCIS VII (1992)

    Google Scholar 

  26. Schmidt, C., B.S.: Parking control device. U.S. patent application no. 13/723,016 (2013)

    Google Scholar 

  27. Shakya, S., Kern, M., Owusu, G., Chin, C.M.: Neural network demand models and evolutionary optimisers for dynamic pricing. Knowl.-Based Syst. 29, 44–53 (2012)

    Article  Google Scholar 

  28. SKLearn: Sklearn - elasticnetcv. https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html#sklearn.linear_model.ElasticNetCV

  29. SKLearn: Tuning the hyper-parameters of an estimator. https://scikit-learn.org/stable/modules/grid_search.html#grid-search

  30. Song, Y., Liang, J., Lu, J., Zhao, X.: An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing 251, 26–34 (2017)

    Article  Google Scholar 

  31. Starkey, A., Hagras, H., Shakya, S., Owusu, G.: A genetic algorithm based system for simultaneous optimisation of workforce skills and teams. KI-Künstliche Intelligenz 32(4), 245–260 (2018)

    Article  Google Scholar 

  32. Székely, G.J., Rizzo, M.L.: Brownian distance covariance. Ann. Appl. Stat. 3(4), 1236–1265 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004)

    Article  Google Scholar 

  34. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  35. Yao, Y., Rosasco, L., Caponnetto, A.: On early stopping in gradient descent learning. Constr. Approx. 26(2), 289–315 (2007)

    Article  MathSciNet  Google Scholar 

  36. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Sikhar Khargharia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khargharia, H.S., Shakya, S., Ainslie, R., Owusu, G. (2021). Evolving Large Scale Prediction Models for Vehicle Volume Forecasting in Service Stations. In: Bramer, M., Ellis, R. (eds) Artificial Intelligence XXXVIII. SGAI-AI 2021. Lecture Notes in Computer Science(), vol 13101. Springer, Cham. https://doi.org/10.1007/978-3-030-91100-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91100-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91099-0

  • Online ISBN: 978-3-030-91100-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics