Abstract
Feedback and state are closely interrelated concepts. Categories with feedback, originally proposed by Katis, Sabadini and Walters, are a weakening of the notion of traced monoidal categories, with several pertinent applications in computer science. The construction of the free such categories has appeared in several different contexts, and can be considered as state bootstrapping. We show that a categorical algebra for open transition systems, \(\mathbf {Span}(\mathbf {Graph})_*\), also due to Katis, Sabadini and Walters, is the free category with feedback over \(\mathbf {Span}(\mathbf {Set})\). This algebra of transition systems is obtained by adding state to an algebra of predicates, and therefore \(\mathbf {Span}(\mathbf {Graph})_*\) is the canonical such algebra.
Di Lavore, Román and Sobociński were supported by the European Union through the ESF funded Estonian IT Academy research measure (2014-2020.4.05.19-0001). This work was also supported by the Estonian Research Council grant PRG1210.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In its original description: “the relay is designed to produce a large and permanent change in the current flowing in an electrical circuit by means of a small electrical stimulus received from the outside” ([12], emphasis added).
- 2.
- 3.
This is the \(\mathbf {Int}\) construction from [24].
- 4.
As in Sect. 2, \(\partial _{A} = \mathsf {fbk}(\sigma _{A,A})\).
References
Abramsky, S.: What are the fundamental structures of concurrency? We still don’t know! CoRR abs/1401.4973 (2014). http://arxiv.org/abs/1401.4973
Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods Comput. Sci. 2(5) (2006). https://doi.org/10.2168/LMCS-2(5:4)2006
Baez, J.C., Courser, K.: Structured cospans. CoRR abs/1911.04630 (2019)
Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category Seminar. LNM, vol. 47, pp. 1–77. Springer, Heidelberg (1967). https://doi.org/10.1007/BFb0074299
Benton, N., Hyland, M.: Traced premonoidal categories. RAIRO Theor. Inform. Appl. 37(4), 273–299 (2003). https://doi.org/10.1051/ita:2003020
Bloom, S.L., Ésik, Z.: Iteration Theories - The Equational Logic of Iterative Processes. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-78034-9
Bonchi, F., Holland, J., Piedeleu, R., Sobociński, P., Zanasi, F.: Diagrammatic algebra: from linear to concurrent systems. Proc. ACM Program. Lang. 3(POPL), 25:1–25:28 (2019). https://doi.org/10.1145/3290338
Bonchi, F., Sobociński, P., Zanasi, F.: The calculus of signal flow diagrams I: linear relations on streams. Inf. Comput. 252, 2–29 (2017). https://doi.org/10.1016/j.ic.2016.03.002
Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets interactions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_21
Carboni, A., Walters, R.F.C.: Cartesian bicategories I. J. Pure Appl. Algebra 49(1–2), 11–32 (1987)
Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: Programming and reasoning with guarded recursion for coinductive types. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 407–421. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46678-0_26
Eccles, W.H., Jordan, F.W.: Improvements in ionic relays. British patent number: GB 148582 (1918)
Elgot, C.C.: Monadic computation and iterative algebraic theories. In: Studies in Logic and the Foundations of Mathematics, vol. 80, pp. 175–230. Elsevier (1975)
Fong, B.: Decorated cospans. Theory Appl. Categories 30(33), 1096–1120 (2015)
Gianola, A., Kasangian, S., Manicardi, D., Sabadini, N., Schiavio, F., Tini, S.: CospanSpan(Graph): a compositional description of the heart system. Fundam. Informaticae 171(1–4), 221–237 (2020)
Gianola, A., Kasangian, S., Manicardi, D., Sabadini, N., Tini, S.: Compositional modeling of biological systems in CospanSpan(Graph). In: Proceedings of ICTCS 2020. CEUR-WS (2020, to appear)
Gianola, A., Kasangian, S., Sabadini, N.: Cospan/Span(Graph): an algebra for open, reconfigurable automata networks. In: Bonchi, F., König, B. (eds.) 7th Conference on Algebra and Coalgebra in Computer Science, CALCO 2017, Ljubljana, Slovenia, 12–16 June 2017. LIPIcs, vol. 72, pp. 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.CALCO.2017.2
Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/10.1016/0304-3975(87)90045-4
Girard, J.Y.: Towards a geometry of interaction. Contemp. Math. 92(69–108), 6 (1989)
Goncharov, S., Schröder, L.: Guarded traced categories. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 313–330. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2_17
Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and models of cyclic lambda calculi. In: de Groote, P., Roger Hindley, J. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 196–213. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62688-3_37
Hasegawa, M.: The uniformity principle on traced monoidal categories. In: Blute, R., Selinger, P. (eds.) Category Theory and Computer Science, CTCS 2002, Ottawa, Canada, 15–17 August 2002. Electronic Notes in Theoretical Computer Science, vol. 69, pp. 137–155. Elsevier (2002). https://doi.org/10.1016/S1571-0661(04)80563-2
Hoshino, N., Muroya, K., Hasuo, I.: Memoryful geometry of interaction: from coalgebraic components to algebraic effects. In: Henzinger, T.A., Miller, D. (eds.) Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS 2014, Vienna, Austria, 14–18 July 2014, pp. 52:1–52:10. ACM (2014). https://doi.org/10.1145/2603088.2603124
Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cambridge Philos. Soc. 119, 447–468 (1996). https://doi.org/10.1017/S0305004100074338
Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory, vol. 1. McGraw-Hill, New York (1969)
Katis, P., Sabadini, N., Walters, R.F.C.: Bicategories of processes. J. Pure Appl. Algebra 115(2), 141–178 (1997)
Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): a categorical algebra of transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 307–321. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0000479
Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of feedback and systems with boundary. In: Rendiconti del Seminario Matematico di Palermo (1999)
Katis, P., Sabadini, N., Walters, R.F.C.: A formalization of the IWIM model. In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp. 267–283. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45263-X_17
Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics. RAIRO-Theor. Inform. Appl. 36(2), 181–194 (2002). https://doi.org/10.1051/ita:2002009
Katis, P., Sabadini, N., Walters, R.F.C.: A process algebra for the Span(Graph) model of concurrency. arXiv preprint arXiv:0904.3964 (2009)
Lack, S.: Composing PROPs. Theory Appl. Categories 13(9), 147–163 (2004)
Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, Springer, New York (1978). https://doi.org/10.1007/978-1-4757-4721-8
Mason, S.J.: Feedback theory - some properties of signal flow graphs. Proc. Inst. Radio Eng. 41(9), 1144–1156 (1953). https://doi.org/10.1109/JRPROC.1953.274449
Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34(5), 1045–1079 (1955)
Milius, S., Litak, T.: Guard your daggers and traces: properties of guarded (co-) recursion. Fund. Inform. 150(3–4), 407–449 (2017)
Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Generic commutative separable algebras and cospans of graphs. Theory Appl. Categories 15(6), 164–177 (2005)
Sabadini, N., Schiavio, F., Walters, R.F.C.: On the geometry and algebra of networks with state. Theor. Comput. Sci. 664, 144–163 (2017)
Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke B. (ed.) New Structures for Physics, vol. 813, pp. 289–355. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12821-9_4
Shannon, C.E.: The Theory and Design of Linear Differential Equation Machines. Bell Telephone Laboratories (1942)
Sobociński, P.: A non-interleaving process calculus for multi-party synchronisation. In: 2nd Interaction and Concurrency Experience: Structured Interactions, (ICE 2009). EPTCS, vol. 12 (2009). https://doi.org/10.4204/eptcs.12.6. http://users.ecs.soton.ac.uk/ps/papers/ice09.pdf
Sobociński, P.: Representations of Petri net interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_38
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Di Lavore, E., Gianola, A., Román, M., Sabadini, N., Sobociński, P. (2021). A Canonical Algebra of Open Transition Systems. In: Salaün, G., Wijs, A. (eds) Formal Aspects of Component Software. FACS 2021. Lecture Notes in Computer Science(), vol 13077. Springer, Cham. https://doi.org/10.1007/978-3-030-90636-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-90636-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90635-1
Online ISBN: 978-3-030-90636-8
eBook Packages: Computer ScienceComputer Science (R0)