Abstract
Nowadays, most of the functional relationships between brain signals and the corresponding complex hand/fingers movements (cause, effect, feedback) are not yet completely understood. In the last years it has been assisted to important advances in Brain Computer Interfaces (BCI), computer vision (CV)-based tracking systems and Robots, especially due to: hardware improvements and miniaturization; increasing pursuit of intelligent and real time tracking systems; fast design, prototyping and production of consumer robots facilitated by 3D printing technologies.
We present an integrated system composed by a BCI, a CV-based hand tracking system and a motorized robotic arm reproducing the hand and the forearm of a person (scale 1:1). The proposal is to synchronize and to monitor the brain activity during complex hand and fingers movements (interpreted and reproduced in real time on a numerical hand model by the tracking system). Further, we aim at recognizing the brain signals which give rise to specific movements and, finally, at using them for producing the corresponding movements on the robotic arm. Different scenarios and potential use-cases are reported and their usefulness discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ameur, S., Ben Khalifa, A., Bouhlel, M.S.: A novel hybrid bidirectional unidirectional LSTM network for dynamic hand gesture recognition with leap motion. Entertain. Comput. 35, 1–10 (2020)
Boostani, R., Moradi, M.H.: Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol. Meas. 24(2), 309–319 (2003). https://doi.org/10.1088/0967-3334/24/2/307
Breitwieser, C., Kreilinger, A., Neuper, C., Müller-Putz, G.: The TOBI hybrid BCI-the data acquisition module. In: Proceedings of the First TOBI Workshop, vol. 58 (2010)
Carrieri, M., et al.: Prefrontal cortex activation upon a demanding virtual hand-controlled task: a new frontier for neuroergonomics. Front. Hum. Neurosci. 10(53), 1–13 (2016)
Chatzis, T., Stergioulas, A., Konstantinidis, D., Dimitropoulos, K., Daras, P.: A comprehensive study on deep learning-based 3D hand pose estimation methods. Appl. Sci. 10(19), 6850 (2020). https://doi.org/10.3390/app10196850
Coyle, S.M., Ward, T.E., Markham, C.M.: Brain-computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4(3), 219–226 (2007). https://doi.org/10.1088/1741-2560/4/3/007
Devaraja, R.R., Maskeliūnas, R., Damaševičius, R.: Design and evaluation of anthropomorphic robotic hand for object grasping and shape recognition. Computers 10(1), 1 (2020). https://doi.org/10.3390/computers10010001
Di Giamberardino, P., Iacoviello, D., Placidi, G., Polsinelli, M., Spezialetti, M.: A brain computer interface by EEG signals from self-induced emotions. In: Tavares, J.M.R.S., Natal Jorge, R.M. (eds.) ECCOMAS 2017. LNCVB, vol. 27, pp. 713–721. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68195-5_77
Erden, F., Çetin, A.E.: Hand gesture based remote control system using infrared sensors and a camera. IEEE Trans. Consum. Electron. 60(4), 675–680 (2014)
Franchi, D., Maurizi, A., Placidi, G.: Characterization of a SimMechanics model for a virtual glove rehabilitation system. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 141–150. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12712-0_13
Halsband, U., Lange, R.K.: Motor learning in man: a review of functional and clinical studies. J. Physiol.-Paris 99(4–6), 414–424 (2006). https://doi.org/10.1016/j.jphysparis.2006.03.007
Hoshi, E.: Cortico-basal ganglia networks subserving goal-directed behavior mediated by conditional visuo-goal association. Front. Neural Circ. 7, 158 (2013). https://doi.org/10.3389/fncir.2013.00158
Iacoviello, D., Pagnani, N., Petracca, A., Spezialetti, M., Placidi, G.: A poll oriented classifier for affective brain computer interfaces. In: Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX, pp. 41–48 (2015)
Iacoviello, D., Petracca, A., Spezialetti, M., Placidi, G.: A classification algorithm for electroencephalography signals by self-induced emotional stimuli. IEEE Trans. Cybern. 46(12), 3171–3180 (2016)
Kiselev, V., Khlamov, M., Chuvilin, K.: Hand gesture recognition with multiple leap motion devices. In: 2019 24th Conference of Open Innovations Association (FRUCT), pp. 163–169. IEEE (2019)
Li, T., Xue, T., Wang, B., Zhang, J.: Decoding voluntary movement of single hand based on analysis of brain connectivity by using EEG signals. Front. Hum. Neurosci. 12, 381 (2018). https://doi.org/10.3389/fnhum.2018.00381
Liao, K., Xiao, R., Gonzalez, J., Ding, L.: Decoding individual finger movements from one hand using human EEG signals. PLoS ONE 9(1), e85192 (2014). https://doi.org/10.1371/journal.pone.0085192
Marin, G., Dominio, F., Zanuttigh, P.: Hand gesture recognition with jointly calibrated leap motion and depth sensor. Multimedia Tools Appl. 75(22), 14991–15015 (2016)
Mick, S., et al.: Reachy, a 3D-printed human-like robotic arm as a testbed for human-robot control strategies. Front. Neurorobotics 13, 65 (2019). https://doi.org/10.3389/fnbot.2019.00065
Miller, K.J., Schalk, G., Fetz, E.E., den Nijs, M., Ojemann, J.G., Rao, R.P.: Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc. Natl. Acad. Sci. 107(9), 4430–4435 (2010). https://doi.org/10.1073/pnas.0913697107
Moro, S.B., et al.: A novel semi-immersive virtual reality visuo-motor task activates ventrolateral prefrontal cortex: a functional near-infrared spectroscopy study. J. Neural Eng. 13(3), 1–14 (2016)
Müller-Putz, G.R., Schwarz, A., Pereira, J., Ofner, P.: From classic motor imagery to complex movement intention decoding. In: Progress in Brain Research, pp. 39–70. Elsevier (2016). https://doi.org/10.1016/bs.pbr.2016.04.017
Petracca, A., et al.: A virtual ball task driven by forearm movements for neuro-rehabilitation. In: 2015 International Conference on Virtual Rehabilitation (ICVR). pp. 162–163 (2015). https://doi.org/10.1109/ICVR.2015.7358600
Placidi, G.: A smart virtual glove for the hand telerehabilitation. Comput. Biol. Med. 37(8), 1100–1107 (2007)
Placidi, G., Avola, D., Cinque, L., Polsinelli, M., Theodoridou, E., Tavares, J.M.R.S.: Data integration by two-sensors in a LEAP-based virtual glove for human-system interaction. Multimedia Tools Appl. 80(12), 18263–18277 (2021). https://doi.org/10.1007/s11042-020-10296-8
Placidi, G., Avola, D., Iacoviello, D., Cinque, L.: Overall design and implementation of the virtual glove. Comput. Biol. Med. 43(11), 1927–1940 (2013)
Placidi, G., Avola, D., Petracca, A., Sgallari, F., Spezialetti, M.: Basis for the implementation of an EEG-based single-trial binary brain computer interface through the disgust produced by remembering unpleasant odors. Neurocomputing 160((C)), 308–318 (2015)
Placidi, G., Cinque, L., Petracca, A., Polsinelli, M., Spezialetti, M.: A virtual glove system for the hand rehabilitation based on two orthogonal leap motion controllers. In: Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, pp. 184–192. INSTICC, SciTePress (2017)
Placidi, G., Cinque, L., Polsinelli, M.: A fast and scalable framework for automated artifact recognition from EEG signals represented in scalp topographies of independent components. Comput. Biol. Med. 132, 104347 (2021). https://doi.org/10.1016/j.compbiomed.2021.104347
Placidi, G., Cinque, L., Polsinelli, M., Spezialetti, M.: Measurements by a leap-based virtual glove for the hand rehabilitation. Sensors 18(3), 1–13 (2018)
Placidi, G., Giamberardino, P.D., Petracca, A., Spezialetti, M., Iacoviello, D.: Classification of emotional signals from the DEAP dataset. In: Proceedings of the 4th International Congress on Neurotechnology, Electronics and Informatics. SCITEPRESS - Science and Technology Publications (2016). https://doi.org/10.5220/0006043400150021
Placidi, G., Petracca, A., Spezialetti, M., Iacoviello, D.: Classification strategies for a single-trial binary brain computer interface based on remembering unpleasant odors. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7019–7022 (2015)
Placidi, G., Petracca, A., Spezialetti, M., Iacoviello, D.: A modular framework for EEG web based binary brain computer interfaces to recover communication abilities in impaired people. J. Med. Syst. 40(1), 34 (2016)
Shen, H., Yang, X., Hu, H., Mou, Q., Lou, Y.: Hand trajectory extraction of human assembly based on multi-leap motions. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 193–198 (2019)
Spezialetti, M., Cinque, L., Tavares, J.M.R., Placidi, G.: Towards EEG-based BCI driven by emotions for addressing BCI-illiteracy: a meta-analytic review. Behav. Inf. Technol. 37(8), 855–871 (2018). https://doi.org/10.1080/0144929x.2018.1485745
Kin Tam, W., Wu, T., Zhao, Q., Keefer, E., Yang, Z.: Human motor decoding from neural signals a review. BMC Biomed. Eng. 1(1), 22 (2019). https://doi.org/10.1186/s42490-019-0022-z
Townsend, G., Graimann, B., Pfurtscheller, G.: Continuous EEG classification during motor imagery–simulation of an asynchronous BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 12(2), 258–265 (2004). https://doi.org/10.1109/tnsre.2004.827220
Vourvopoulos, A., Bermúdez i Badia, S.: Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. J. NeuroEngineering Rehabil. 13(1), 69 (2016). https://doi.org/10.1186/s12984-016-0173-2
Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. 101(51), 17849–17854 (2004). https://doi.org/10.1073/pnas.0403504101
Yang, L., Chen, J., Zhu, W.: Dynamic hand gesture recognition based on a leap motion controller and two-layer bidirectional recurrent neural network. Sensors 20, 2106–2123 (2020)
Yoo, S.S., et al.: Brain-computer interface using fMRI: spatial navigation by thoughts. NeuroReport 15(10), 1591–1595 (2004). https://doi.org/10.1097/01.wnr.0000133296.39160.fe
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Placidi, G., De Gasperis, G., Mignosi, F., Polsinelli, M., Spezialetti, M. (2021). Integration of a BCI with a Hand Tracking System and a Motorized Robotic Arm to Improve Decoding of Brain Signals Related to Hand and Finger Movements. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13017. Springer, Cham. https://doi.org/10.1007/978-3-030-90439-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-90439-5_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90438-8
Online ISBN: 978-3-030-90439-5
eBook Packages: Computer ScienceComputer Science (R0)