Vehicle Detection and Tracking from Surveillance Cameras in Urban Scenes | SpringerLink
Skip to main content

Vehicle Detection and Tracking from Surveillance Cameras in Urban Scenes

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2021)

Abstract

Detecting and tracking vehicles in urban scenes is a crucial step in many traffic-related applications as it helps to improve road user safety among other benefits. Various challenges remain unresolved in multi-object tracking (MOT) including target information description, long-term occlusions and fast motion. We propose a multi-vehicle detection and tracking system following the tracking-by-detection paradigm that tackles the previously mentioned challenges. Our MOT method extends an Intersection-over-Union (IOU)-based tracker with vehicle re-identification features. This allows us to utilize appearance information to better match objects after long occlusion phases and/or when object location is significantly shifted due to fast motion. We outperform our baseline MOT method on the UA-DETRAC benchmark while maintaining a total processing speed suitable for online use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bochinski, E.: High-speed tracking-by-detection without using image information. In: International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017 (2017)

    Google Scholar 

  2. Bochinski, E.: Extending IOU Based multi-object tracking by visual information. In: IEEE International Conference on Advanced Video and Signals-Based Surveillance, pp. 441–446 (2018)

    Google Scholar 

  3. Wu, C., Liu, C., Chiang, C., Tu, W., Chien, S.: Vehicle re-identification with the space-time prior. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2018)

    Google Scholar 

  4. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2011). https://doi.org/10.1007/978-1-84882-935-0

  5. Fiaz, M.: Handcrafted and deep trackers: recent visual object tracking approaches. ACM Comput. Survey 52, 1–44 (2019)

    Article  Google Scholar 

  6. Li, W.: Multiple object tracking with motion and appearance cues. In: IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 161–169 (2019)

    Google Scholar 

  7. Ren, S.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Patt. Anal. Mach. Intell. 39, 1137–1149 (2017)

    Article  Google Scholar 

  8. He, K.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  9. Redmon, J.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  10. Zhou, X.: Objects as Points. ArXiv, abs/1904.07850 (2019)

    Google Scholar 

  11. Perreault, H.: SpotNet: self-attention multi-task network for object detection. In: 2020 17th Conference on Computer and Robot Vision (CRV), pp. 230–237 (2020)

    Google Scholar 

  12. Dicle, C.: The way they move: tracking multiple targets with similar appearance. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 2304–2311 (2013)

    Google Scholar 

  13. Rezatofighi, S.: Joint probabilistic data association revisited. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3047–3055 (2015)

    Google Scholar 

  14. Pirsiavash, H.: Globally-optimal greedy algorithms for tracking a variable number of objects. CVPR 2011, 1201–1208 (2011)

    Google Scholar 

  15. Kalman, E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  16. Kuhn, H. W.: The Hungarian method for the assignment problem. Naval Res. Logis. Q. 2, 83–97 (1955)

    Google Scholar 

  17. Bewley, A.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468 (2016)

    Google Scholar 

  18. Wojke, N.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649 (2017)

    Google Scholar 

  19. Sun, S.: Deep affinity network for multiple object tracking. IEEE Trans. Patt. Anal. Mach. Intell. 43, 104–119 (2021)

    Google Scholar 

  20. Zhu, J., Yang, H., Liu, N., Kim, M., Zhang, W., Yang, M.-H.: Online multi-object tracking with dual matching attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 379–396. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_23

    Chapter  Google Scholar 

  21. Kieritz, H.: Joint detection and online multi-object tracking. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR), pp. 1459–1467 (2018)

    Google Scholar 

  22. Milan, A.: Online multi-target tracking using recurrent neural networks. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 4225–4232 (2017)

    Google Scholar 

  23. Braso, G.: Learning a neural solver for multiple object tracking. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6246–6256 (2020)

    Google Scholar 

  24. Lee, S.: multiple object tracking via feature pyramid Siamese networks. IEEE Access 7, 8181–8194 (2019)

    Google Scholar 

  25. Osep, A.: Track, then decide: category-agnostic vision-based multi-object tracking. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3494–3501 (2018)

    Google Scholar 

  26. Newell, A.: Stacked Hourglass networks for human pose estimation. ECCV (2016)

    Google Scholar 

  27. St-Charles, P.-L.: A self-adjusting approach to change detection based on background word consensus. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 990–997 (2015)

    Google Scholar 

  28. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  29. Wen, L.: UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. Comput. Vis. Image Underst 193, 102907 (2020)

    Google Scholar 

  30. Miah, M.: An empirical analysis of visual features for multiple object tracking in urban scenes. In: International Conference on Pattern Recognition (ICPR) (2020)

    Google Scholar 

  31. He, K.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  32. Kang, Z.: Multiple Object Tracking in Videos. Master’s thesis, Department of computer engineering, École Polytechnique de Montréal (2021)

    Google Scholar 

  33. Kalal, Z.: Forward-backward error: automatic detection of tracking failures. In: Proceedings of the 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oumayma Messoussi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Messoussi, O. et al. (2021). Vehicle Detection and Tracking from Surveillance Cameras in Urban Scenes. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13018. Springer, Cham. https://doi.org/10.1007/978-3-030-90436-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90436-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90435-7

  • Online ISBN: 978-3-030-90436-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics