Non-homogeneous Haze Removal Through a Multiple Attention Module Architecture | SpringerLink
Skip to main content

Non-homogeneous Haze Removal Through a Multiple Attention Module Architecture

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13018))

Included in the following conference series:

  • 1102 Accesses

Abstract

This paper presents a novel attention based architecture to remove non-homogeneous haze. The proposed model is focused on obtaining the most representative characteristics of the image, at each learning cycle, by means of adaptive attention modules coupled with a residual learning convolutional network. The latter is based on the Res2Net model. The proposed architecture is trained with just a few set of images. Its performance is evaluated on a public benchmark—images from the non-homogeneous haze NTIRE 2021 challenge—and compared with state of the art approaches reaching the best result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)

    Google Scholar 

  2. Ancuti, C.O., Ancuti, C.: Single image dehazing by multi-scale fusion. IEEE Trans. Image Process. 22(8), 3271–3282 (2013)

    Article  Google Scholar 

  3. Berman, D., Avidan, S., et al.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)

    Google Scholar 

  4. Chen, D., He, M., Fan, Q., Liao, J., Zhang, L., Hou, D., Yuan, L., Hua, G.: Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1375–1383. IEEE (2019)

    Google Scholar 

  5. Dudhane, A., Biradar, K.M., Patil, P.W., Hambarde, P., Murala, S.: Varicolored image de-hazing. In: proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4564–4573 (2020)

    Google Scholar 

  6. Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. (TOG) 34(1), 1–14 (2014)

    Article  Google Scholar 

  7. Galdran, A., Vazquez-Corral, J., Pardo, D., Bertalmio, M.: Fusion-based variational image dehazing. IEEE Sig. Process. Lett. 24(2), 151–155 (2016)

    MATH  Google Scholar 

  8. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1956–1963 (2009)

    Google Scholar 

  9. Ju, M., Ding, C., Ren, W., Yang, Y., Zhang, D., Guo, Y.J.: Ide: Image dehazing and exposure using an enhanced atmospheric scattering model. IEEE Trans. Image Process. 30, 2180–2192 (2021)

    Article  Google Scholar 

  10. Lee, M., Ban, S.-W.: Incremental knowledge representation based on visual selective attention. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007. LNCS, vol. 4985, pp. 940–949. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69162-4_98

    Chapter  Google Scholar 

  11. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4780–4788 (2017)

    Google Scholar 

  12. Li, H., Wu, Q., Ngan, K.N., Li, H., Meng, F.: Region adaptive two-shot network for single image dehazing. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2020)

    Google Scholar 

  13. Li, L., Dong, Y., Ren, W., Pan, J., Gao, C., Sang, N., Yang, M.H.: Semi-supervised image dehazing. IEEE Trans. Image Process. 29, 2766–2779 (2019)

    Article  Google Scholar 

  14. Liew, S.H., Low, Y.F., Lim, K.C., Choo, Y.H., Farghaly, M.R.M.: Performance evaluation of convolutional neural network in classification of EEG signals based on attention task. ARPN J. Eng. Appl. Sci. 13, 3400–3404 (2006)

    Google Scholar 

  15. Liu, J., Wu, H., Xie, Y., Qu, Y., Ma, L.: Trident dehazing network. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1732–1741 (2020)

    Google Scholar 

  16. Long, J., Shi, Z., Tang, W., Zhang, C.: Single remote sensing image dehazing. IEEE Geosci. Remote Sens. Lett. 11(1), 59–63 (2013)

    Article  Google Scholar 

  17. Markets and Markets, Inc.: Video Surveillance Market. https://www.marketsandmarkets.com/Market-Reports/video-surveillance-market-645.html

  18. McCartney, E.J.: Optics of the Atmosphere: Scattering by Molecules and Particles. Wiley, New York (1976)

    Google Scholar 

  19. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11908–11915 (2020)

    Google Scholar 

  20. Shao, Y., Li, L., Ren, W., Gao, C., Sang, N.: Domain adaptation for image dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2808–2817 (2020)

    Google Scholar 

  21. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  22. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6924–6932 (2017)

    Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  25. Yu, Y., Liu, H., Fu, M., Chen, J., Wang, X., Wang, K.: A two-branch neural network for non-homogeneous dehazing via ensemble learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 193–202 (2021)

    Google Scholar 

  26. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  27. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the ESPOL Polytechnic University; the Spanish Government under Project TIN2017-89723-P; and the “CERCA Programme/Generalitat de Catalunya”. The authors gratefully acknowledge the support of the CYTED Network: “Ibero-American Thematic Network on ICT Applications for Smart Cities” (REF-518RT0559) and the NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia L. Suárez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suárez, P.L., Carpio, D., Sappa, A.D. (2021). Non-homogeneous Haze Removal Through a Multiple Attention Module Architecture. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13018. Springer, Cham. https://doi.org/10.1007/978-3-030-90436-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90436-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90435-7

  • Online ISBN: 978-3-030-90436-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics