Abstract
This paper presents a novel attention based architecture to remove non-homogeneous haze. The proposed model is focused on obtaining the most representative characteristics of the image, at each learning cycle, by means of adaptive attention modules coupled with a residual learning convolutional network. The latter is based on the Res2Net model. The proposed architecture is trained with just a few set of images. Its performance is evaluated on a public benchmark—images from the non-homogeneous haze NTIRE 2021 challenge—and compared with state of the art approaches reaching the best result.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)
Ancuti, C.O., Ancuti, C.: Single image dehazing by multi-scale fusion. IEEE Trans. Image Process. 22(8), 3271–3282 (2013)
Berman, D., Avidan, S., et al.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)
Chen, D., He, M., Fan, Q., Liao, J., Zhang, L., Hou, D., Yuan, L., Hua, G.: Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1375–1383. IEEE (2019)
Dudhane, A., Biradar, K.M., Patil, P.W., Hambarde, P., Murala, S.: Varicolored image de-hazing. In: proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4564–4573 (2020)
Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. (TOG) 34(1), 1–14 (2014)
Galdran, A., Vazquez-Corral, J., Pardo, D., Bertalmio, M.: Fusion-based variational image dehazing. IEEE Sig. Process. Lett. 24(2), 151–155 (2016)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1956–1963 (2009)
Ju, M., Ding, C., Ren, W., Yang, Y., Zhang, D., Guo, Y.J.: Ide: Image dehazing and exposure using an enhanced atmospheric scattering model. IEEE Trans. Image Process. 30, 2180–2192 (2021)
Lee, M., Ban, S.-W.: Incremental knowledge representation based on visual selective attention. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007. LNCS, vol. 4985, pp. 940–949. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69162-4_98
Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4780–4788 (2017)
Li, H., Wu, Q., Ngan, K.N., Li, H., Meng, F.: Region adaptive two-shot network for single image dehazing. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2020)
Li, L., Dong, Y., Ren, W., Pan, J., Gao, C., Sang, N., Yang, M.H.: Semi-supervised image dehazing. IEEE Trans. Image Process. 29, 2766–2779 (2019)
Liew, S.H., Low, Y.F., Lim, K.C., Choo, Y.H., Farghaly, M.R.M.: Performance evaluation of convolutional neural network in classification of EEG signals based on attention task. ARPN J. Eng. Appl. Sci. 13, 3400–3404 (2006)
Liu, J., Wu, H., Xie, Y., Qu, Y., Ma, L.: Trident dehazing network. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1732–1741 (2020)
Long, J., Shi, Z., Tang, W., Zhang, C.: Single remote sensing image dehazing. IEEE Geosci. Remote Sens. Lett. 11(1), 59–63 (2013)
Markets and Markets, Inc.: Video Surveillance Market. https://www.marketsandmarkets.com/Market-Reports/video-surveillance-market-645.html
McCartney, E.J.: Optics of the Atmosphere: Scattering by Molecules and Particles. Wiley, New York (1976)
Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11908–11915 (2020)
Shao, Y., Li, L., Ren, W., Gao, C., Sang, N.: Domain adaptation for image dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2808–2817 (2020)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6924–6932 (2017)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Yu, Y., Liu, H., Fu, M., Chen, J., Wang, X., Wang, K.: A two-branch neural network for non-homogeneous dehazing via ensemble learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 193–202 (2021)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgements
This work has been partially supported by the ESPOL Polytechnic University; the Spanish Government under Project TIN2017-89723-P; and the “CERCA Programme/Generalitat de Catalunya”. The authors gratefully acknowledge the support of the CYTED Network: “Ibero-American Thematic Network on ICT Applications for Smart Cities” (REF-518RT0559) and the NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Suárez, P.L., Carpio, D., Sappa, A.D. (2021). Non-homogeneous Haze Removal Through a Multiple Attention Module Architecture. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13018. Springer, Cham. https://doi.org/10.1007/978-3-030-90436-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-90436-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90435-7
Online ISBN: 978-3-030-90436-4
eBook Packages: Computer ScienceComputer Science (R0)