Abstract
In this paper, we introduce admittance control as an approach to control the physical interaction between robot and environment, and propose an enhanced admittance controller (EAC) framework with a well-designed control scheme that improves the system response while possessing the ability to suppress transient force overshoot and maintain steady-state force tracking. Within this framework, we analyze the pre-fuzzy PID, environmental parameter estimation, computed torque control, and propose a time-varying force control theory analysis based on the traditional target admittance model, and introduce an adaptive algorithm to compensate the environmental uncertainty, and verify the stability of the system based on the Routh criterion and Lyapunov equation. Finally, simulations are performed to verify the proposed control scheme in terms of system response, transient and steady-state force overshoot, and steady-state force tracking. Finally, simulations are performed to verify the effectiveness of the proposed control scheme in terms of system response, transient and steady-state force control performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, F., Zhao, H., Li, D.: Contact force control and vibration suppression in robotic polishing with a smart end effector. Robot. Comput. Integr. Manuf. 57, 391–403 (2019). https://doi.org/10.1016/j.rcim.2018.12.019
Gracia, L., Solanes, J.E., Muñoz-Benavent, P.: Human-robot collaboration for surface treatment tasks. Interact. Stud. Soc. Behav. Commun. Biol. Artif. Syst. 20(1), 148–184 (2019). https://doi.org/10.1075/is.18010.gra
Yao, B., Zhou, Z., Wang, L.: Sensorless and adaptive admittance control of industrial robot in physical human−robot interaction. Robot. Comput. Integrat. Manuf. 51, 158–168 (2018). https://doi.org/10.1016/j.rcim.2017.12.004
Ji, W., Wang, L.: Industrial robotic machining: a review. Int. J. Adv. Manuf. Technol. 103(1–4), 1239–1255 (2019). https://doi.org/10.1007/s00170-019-03403-z
Park, H., Park, J., Lee, D.-H.: Compliance-based robotic peg-in-hole assembly strategy without force feedback. IEEE Trans. Indust. Electron. 64(8), 6299–6309 (2017). https://doi.org/10.1109/tie.2017.2682002
Yuen, S.G., Perrin, D.P., Vasilyev, N.V.: Force tracking with feed-forward motion estimation for beating heart surgery. IEEE Trans. Rob. 26(5), 888–896 (2010). https://doi.org/10.1109/TRO.2010.2053734
Ferraguti, F., Talignani Landi, C., Sabattini, L.: A variable admittance control strategy for stable physical human–robot interaction. Int. J. Robot. Res. 38(6), 747–765 (2019). doi: https://doi.org/10.1177/0278364919840415
Keemink, A.Q.L., van der Kooij, H., Stienen, A.H.A.: Admittance control for physical human–robot interaction. Int. J. Robot. Res. 37(11), 1421–1444 (2018). https://doi.org/10.1177/0278364918768950
Solanes, J.E., Gracia, L., Muñoz-Benavent, P.: Adaptive robust control and admittance control for contact-driven robotic surface conditioning. Robot. Comput.-Integrat. Manuf. 54, 115–132 (2018). https://doi.org/10.1016/j.rcim.2018.05.003
Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Contr. 103(2), 126–133 (1981). https://doi.org/10.1115/1.3139652
Hogan, N.: Impedance control: an approach to manipulation: Part I—Theory. J. Dyn. Syst. Meas. Contr. 107(1), 1–7 (1985). https://doi.org/10.1115/1.3140701
Hogan, N.: Impedance control: an approach to manipulation: Part II—Implementation. J. Dyn. Syst. Meas. Contr. 107(1), 8–16 (1985). https://doi.org/10.1115/1.3140702
Hogan, N.: Impedance control: an approach to manipulation: Part III—Applications. J. Dyn. Syst. Meas. Contr. 107(1), 17–24 (1985). https://doi.org/10.1115/1.3140713
Mason, M.T.: Compliance and force control for computer controlled manipulators. IEEE Trans. Syst. Man Cybern. 11(6), 418–432 (1981). https://doi.org/10.1109/tsmc.1981.4308708
Wang, H., Xie, Y.: Adaptive Jacobian force/position tracking control of robotic manipulators in compliant contact with an uncertain surface. Adv. Robot. 23(1–2), 165–183 (2009). https://doi.org/10.1163/156855308X392726
Seraji, H., Colbaugh, R.: Force tracking in impedance control. Int. J. Robot. Res. 16(1), 97–117 (1997). https://doi.org/10.1177/027836499701600107
Ueberle, M., Mock, N., Buss, M.: VISHARD10, a novel hyper-redundant haptic interface. In: Proceedings - 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS, 2004, pp. 58–65. doi: https://doi.org/10.1109/HAPTIC.2004.1287178. doi: https://doi.org/10.1017/s026357479700057x.
Cao, H., He, Y., Chen, X., Liu, Z.: Control of adaptive switching in the sensing-executing mode used to mitigate collision in robot force control. J. Dyn. Syst. Measur. Control 141(11) (2019). doi: https://doi.org/10.1115/1.4043917
Sciavicco, B.S.L.: Modelling and Control of Robot Manipulators (2012)
Ketelhut, M., Kolditz, M., Göll, F., Braunstein, B.: Admittance control of an industrial robot during resistance training. IFAC-PapersOnLine 52(19), 223–228 (2019). https://doi.org/10.1109/ACCESS.2019.2924696
Xu, W., Cai, C., Yin, M.: Time-varying force tracking in impedance control. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 344–349 (2012). doi: https://doi.org/10.1109/TCST.2017.2739109
Acknowledgments
This research is supported by the key R&D project “Key Technology and Application Research of High-Power Direct Drive Spindle Unit for High-end CNC Lathe” of Chongqing Technology Innovation and Application Development Special Project (project number cstc2019jscx-fxydX0022).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, C., He, Y., Li, K., Zhao, X. (2021). Enhanced Admittance Control for Time-Varying Force Tracking of Robots in Unknown Environment. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-89098-8_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89097-1
Online ISBN: 978-3-030-89098-8
eBook Packages: Computer ScienceComputer Science (R0)