Real-Time Fluid Simulation with Atmospheric Pressure Using Weak Air Particles | SpringerLink
Skip to main content

Real-Time Fluid Simulation with Atmospheric Pressure Using Weak Air Particles

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13002))

Included in the following conference series:

  • 2224 Accesses

Abstract

Atmospheric pressure is important yet often ignored in fluid simulation, resulting in many phenomena being overlooked. This paper presents a particle-based approach to simulate versatile liquid effects under atmospheric pressure in real time. We introduce weak air particles as a sparse sampling of air. The weak air particles can be used to efficiently track liquid surfaces under atmospheric pressure, and are weakly coupled with the liquid. We allow the large-mass liquid particles to contribute to the density estimation of small-mass air particles and neglect the air’s influence on liquid density, leaving only the surface forces of air on the liquid to guarantee the stability of the two-phase flow with a large density ratio. The proposed surface force model is composed of density-related atmospheric pressure force and surface tension force. By correlating the pressure and the density, we ensure that the atmospheric pressure increases as the air is compressed in a confined space. Experimental results demonstrate the efficiency and effectiveness of our methods in simulating the interplay between air and liquid in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. (TOG) 26(3), 48-es (2007)

    Google Scholar 

  2. Akinci, N., Akinci, G., Teschner, M.: Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. (TOG) 32(6), 1–8 (2013)

    Article  Google Scholar 

  3. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)

    Google Scholar 

  4. Boyd, L., Bridson, R.: Multiflip for energetic two-phase fluid simulation. ACM Trans. Graph. (TOG) 31(2), 1–12 (2012)

    Article  Google Scholar 

  5. Chen, Z., Zong, Z., Liu, M., Zou, L., Li, H., Shu, C.: An SPH model for multiphase flows with complex interfaces and large density differences. J. Comput. Phys. 283, 169–188 (2015)

    Article  MathSciNet  Google Scholar 

  6. Gao, M., et al.: Animating fluid sediment mixture in particle-laden flows. ACM Trans. Graph. (TOG) 37(4), 1–11 (2018)

    Article  Google Scholar 

  7. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  Google Scholar 

  8. Goldade, R., Aanjaneya, M., Batty, C.: Constraint bubbles and affine regions: reduced fluid models for efficient immersed bubbles and flexible spatial coarsening. ACM Transactions on Graphics (TOG) 39(4), 43:1–15 (2020)

    Google Scholar 

  9. Green, S.: Particle simulation using CUDA. NVIDIA Whitepaper 6, 121–128 (2010)

    Google Scholar 

  10. He, X., Wang, H., Zhang, F., Wang, H., Wang, G., Zhou, K.: Robust simulation of sparsely sampled thin features in SPH-based free surface flows. ACM Trans. Graph. (TOG) 34(1), 1–9 (2014)

    Article  Google Scholar 

  11. Ihmsen, M., Akinci, N., Akinci, G., Teschner, M.: Unified spray, foam and air bubbles for particle-based fluids. Vis. Comput. 28(6), 669–677 (2012)

    Article  Google Scholar 

  12. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible SPH. IEEE Trans. Visual Comput. Graph. 20(3), 426–435 (2013)

    Article  Google Scholar 

  13. Katz, S., Tal, A., Basri, R.: Direct visibility of point sets. ACM Trans. Graph. (TOG) 26(3), 24-es (2007)

    Google Scholar 

  14. Kim, B.: Multi-phase fluid simulations using regional level sets. ACM Trans. Graph. (TOG) 29(6), 1–8 (2010)

    Article  Google Scholar 

  15. Kim, J.-H., Kim, W., Lee, J.: Physics-inspired approach to realistic and stable water spray with narrowband air particles. Vis. Comput. 34(4), 461–471 (2017). https://doi.org/10.1007/s00371-017-1353-1

    Article  MathSciNet  Google Scholar 

  16. van der Laan, W.J., Green, S., Sainz, M.: Screen space fluid rendering with curvature flow. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pp. 91–98 (2009)

    Google Scholar 

  17. Langlois, T.R., Zheng, C., James, D.L.: Toward animating water with complex acoustic bubbles. ACM Trans. Graph. (TOG) 35(4), 1–13 (2016)

    Article  Google Scholar 

  18. Li, W., Liu, D., Desbrun, M., Huang, J., Liu, X.: Kinetic-based multiphase flow simulation. IEEE Trans. Vis. Comput. Graph. 27(7), 3318–3334 (2020)

    Article  Google Scholar 

  19. Liu, S., Wang, B., Ban, X.: Multiple-scale simulation method for liquid with trapped air under particle-based framework. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 842–850. IEEE (2020)

    Google Scholar 

  20. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  21. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. (TOG) 32(4), 1–12 (2013)

    Article  Google Scholar 

  22. Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-time applications. ACM Trans. Graph. (TOG) 33(4), 1–12 (2014)

    Article  Google Scholar 

  23. Macklin, M., et al.: Small steps in physics simulation. In: Proceedings of the 18th annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–7 (2019)

    Google Scholar 

  24. Monaghan, J.J., Rafiee, A.: A simple SPH algorithm for multi-fluid flow with high density ratios. Int. J. Numer. Meth. Fluids 71(5), 537–561 (2013)

    Article  MathSciNet  Google Scholar 

  25. Müller, M., Charypar, D., Gross, M.H.: Particle-based fluid simulation for interactive applications. In: Symposium on Computer Animation, pp. 154–159 (2003)

    Google Scholar 

  26. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)

    Article  Google Scholar 

  27. Orthmann, J., Hochstetter, H., Bader, J., Bayraktar, S., Kolb, A.: Consistent surface model for SPH-based fluid transport. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 95–103 (2013)

    Google Scholar 

  28. Ren, B., Li, C., Yan, X., Lin, M.C., Bonet, J., Hu, S.M.: Multiple-fluid SPH simulation using a mixture model. ACM Trans. Graph. (TOG) 33(5), 1–11 (2014)

    Article  Google Scholar 

  29. Sandim, M., Cedrim, D., Nonato, L.G., Pagliosa, P., Paiva, A.: Boundary detection in particle-based fluids. In: Computer Graphics Forum, pp. 215–224. Wiley Online Library (2016)

    Google Scholar 

  30. Schechter, H., Bridson, R.: Ghost SPH for animating water. ACM Trans. Graph. (TOG) 31(4), 1–8 (2012)

    Article  Google Scholar 

  31. Solenthaler, B., Pajarola, R.: Density contrast SPH interfaces. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 211–218 (2008)

    Google Scholar 

  32. Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. ACM Trans. Graph. (TOG) 28(3), 1–6 (2009)

    Article  Google Scholar 

  33. Yan, X., Jiang, Y.T., Li, C.F., Martin, R.R., Hu, S.M.: Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graph. (TOG) 35(4), 1–11 (2016)

    Google Scholar 

  34. Yang, T., Chang, J., Lin, M.C., Martin, R.R., Zhang, J.J., Hu, S.M.: A unified particle system framework for multi-phase, multi-material visual simulations. ACM Trans. Graph. (TOG) 36(6), 1–13 (2017)

    Article  Google Scholar 

  35. Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. (TOG) 32(1), 1–12 (2013)

    Article  Google Scholar 

  36. Zhang, F., Zhang, X., Sze, K.Y., Lian, Y., Liu, Y.: Incompressible material point method for free surface flow. J. Comput. Phys. 330, 92–110 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank all the reviewers for their insightful comments. We thank Qian Chen and Yue Wang for their valuable feedback. This work was supported by the National Key Research and Development Program of China (2018YFB1004902) and the National Natural Science Foundation of China (61772329, 61373085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xubo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sang, T., Chen, W., Ma, Y., Wang, H., Yang, X. (2021). Real-Time Fluid Simulation with Atmospheric Pressure Using Weak Air Particles. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89029-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89028-5

  • Online ISBN: 978-3-030-89029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics