Abstract
Smart manufacturing demands to process data in domain-specific real-time. Engineering models created for constructing, commissioning, planning, or simulating manufacturing systems can facilitate aggregating and abstracting the wealth of manufacturing data to faster processable data structures for more timely decision making. Current research lacks conceptual foundations for how data and engineering models can be exploited in an integrated way to achieve this. Such research demands expertise from different smart manufacturing domains to harmonize the notion space. We propose a conceptual model to describe digital shadows, data structures tailored to exploit models and data in smart manufacturing, through a metamodel and its notion space. This conceptual model was established through interdisciplinary research in the German excellence cluster “Internet of Production” and evaluated in various real-world manufacturing scenarios. This foundation for an understanding helps to manage complexity, automated analyses, and syntheses, and, ultimately, facilitates cross-domain collaboration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2023 Internet of Production - 390621612. Website: https://www.iop.rwth-aachen.de/.
References
DIN ISO 55000:2017–05, Asset Management - Übersicht, Leitlinien und Begriffe
DIN SPEC 91345:2016–04, Reference Architecture Model Industrie 4.0 (RAMI4.0)
Bibow, P., et al.: Model-driven development of a digital twin for injection molding. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 85–100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_6
Bravo, C., Aguilar, J., Ríos, A., Aguilar-Martin, J., Rivas, F.: A generalized data meta-model for production companies ontology definition. Int. J. Syst. Appl. Eng. Dev. 2, 191–202 (2008)
Dalibor, M., Michael, J., Rumpe, B., Varga, S., Wortmann, A.: Towards a model-driven architecture for interactive digital twin cockpits. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 377–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_28
Desai, N., Ananya, S.K., Bajaj, L., Periwal, A., Desai, S.R.: Process parameter monitoring and control using digital twin. In: Auer, M.E., Ram B., K. (eds.) REV2019 2019. LNNS, vol. 80, pp. 74–80. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23162-0_8
Gomez-Escalonilla, J., Garijo, D., Valencia, O., Rivero, I.: Development of efficient high-fidelity solutions for virtual fatigue testing. In: Niepokolczycki, A., Komorowski, J. (eds.) ICAF 2019. LNME, pp. 187–200. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21503-3_15
Gosavi, A., et al.: Simulation-Based Optimization. Springer, Heidelberg (2015). https://doi.org/10.1007/978-1-4899-7491-4
Hu, L., et al.: Modeling of cloud-based digital twins for smart manufacturing with MT connect. Proc. Manuf. 26, 1193–1203 (2018)
Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018)
Ladj, A., Wang, Z., Meski, O., Belkadi, F., Ritou, M., Da Cunha, C.: A knowledge-based digital shadow for machining industry in a digital twin perspective. J. Manuf. Syst. 58, 168–179 (2021)
Liau, Y., Lee, H., Ryu, K.: Digital twin concept for smart injection molding. In: IOP Conference Series: Materials Science and Engineering, vol. 324, p. 012077 (2018)
Liebenberg, M., Jarke, M.: Information systems engineering with digital shadows: concept and case studies. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 70–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_5
Loucopoulos, P., Kavakli, E., Chechina, N.: Requirements engineering for cyber physical production systems. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 276–291. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_18
Luo, W., Hu, T., Zhang, C., Wei, Y.: Digital twin for CNC machine tool: modeling and using strategy. J. Ambient Intell. Humaniz. Comput. 10(3), 1129–1140 (2019)
Mayr, H.C., Thalheim, B.: The triptych of conceptual modeling. Softw. Syst. Model. 20(1), 7–24 (2020). https://doi.org/10.1007/s10270-020-00836-z
Mujber, T., Szecsi, T., Hashmi, M.: Virtual reality applications in manufacturing process simulation. J. Mater. Process. Technol. 155-156, 1834–1838 (2004)
Parri, J., Patara, F., Sampietro, S., Vicario, E.: A framework for model-driven engineering of resilient software-controlled systems. Computing 103(4), 589–612 (2021)
Quix, C., Hai, R., Vatov, I.: Metadata extraction and management in data lakes with GEMMS. Complex Syst. Inf. Model. Q. 9, 67–83 (2016)
Schmertosch, T., Krabbes, M.: Automatisierung 4.0: Objektorientierte Entwicklung modularer Maschinen für die digitale Produktion. Carl Hanser Verlag (2018)
Schuh, G., Gützlaff, A., Sauermann, F., Maibaum, J.: Digital shadows as an enabler for the internet of production. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D. (eds.) APMS 2020. IAICT, vol. 591, pp. 179–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57993-7_21
Schuh, G., Kelzenberg, C., Wiese, J., Ochel, T.: Data structure of the digital shadow for systematic knowledge management systems in single and small batch production. Proc. CIRP 84, 1094–1100 (2019)
Schuh, G., Prote, J.-P., Gützlaff, A., Thomas, K., Sauermann, F., Rodemann, N.: Internet of production: rethinking production management. In: Wulfsberg, J.P., Hintze, W., Behrens, B.-A. (eds.) Production at the Leading Edge of Technology, pp. 533–542. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-60417-5_53
Stachowiak, H.: Allgemeine Modelltheorie. Springer, Heidelberg (1973)
Urbina Coronado, P.D., Lynn, R., Louhichi, W., Parto, M., Wescoat, E., Kurfess, T.: Part data integration in the shop floor digital twin: mobile and cloud technologies to enable a manufacturing execution system. J. Manuf. Syst. 48, 25–33 (2018). Special Issue on Smart Manufacturing
VDI: Industrie 4.0 - Technical Assets - Basic terminology concepts, life cycles and administration models (2016)
Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design. Elsevier (2011)
White, S.A.: Introduction to BPMN. IBM Cooper. 2, 1–26 (2004)
Wortmann, A., Barais, O., Combemale, B., Wimmer, M.: Modeling languages in industry 4.0: an extended systematic mapping study. Softw. Syst. Model. 19(1), 67–94 (2020)
Zambal, S., Eitzinger, C., Clarke, M., Klintworth, J., Mechin, P.: A digital twin for composite parts manufacturing: effects of defects analysis based on manufacturing data. In: International Conference on Industrial Informatics (INDIN 2018), pp. 803–808. IEEE (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Becker, F. et al. (2021). A Conceptual Model for Digital Shadows in Industry and Its Application. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds) Conceptual Modeling. ER 2021. Lecture Notes in Computer Science(), vol 13011. Springer, Cham. https://doi.org/10.1007/978-3-030-89022-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-89022-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89021-6
Online ISBN: 978-3-030-89022-3
eBook Packages: Computer ScienceComputer Science (R0)