A Conceptual Model for Digital Shadows in Industry and Its Application | SpringerLink
Skip to main content

A Conceptual Model for Digital Shadows in Industry and Its Application

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2021)

Abstract

Smart manufacturing demands to process data in domain-specific real-time. Engineering models created for constructing, commissioning, planning, or simulating manufacturing systems can facilitate aggregating and abstracting the wealth of manufacturing data to faster processable data structures for more timely decision making. Current research lacks conceptual foundations for how data and engineering models can be exploited in an integrated way to achieve this. Such research demands expertise from different smart manufacturing domains to harmonize the notion space. We propose a conceptual model to describe digital shadows, data structures tailored to exploit models and data in smart manufacturing, through a metamodel and its notion space. This conceptual model was established through interdisciplinary research in the German excellence cluster “Internet of Production” and evaluated in various real-world manufacturing scenarios. This foundation for an understanding helps to manage complexity, automated analyses, and syntheses, and, ultimately, facilitates cross-domain collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2023 Internet of Production - 390621612. Website: https://www.iop.rwth-aachen.de/.

References

  1. DIN ISO 55000:2017–05, Asset Management - Übersicht, Leitlinien und Begriffe

    Google Scholar 

  2. DIN SPEC 91345:2016–04, Reference Architecture Model Industrie 4.0 (RAMI4.0)

    Google Scholar 

  3. Bibow, P., et al.: Model-driven development of a digital twin for injection molding. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 85–100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_6

    Chapter  Google Scholar 

  4. Bravo, C., Aguilar, J., Ríos, A., Aguilar-Martin, J., Rivas, F.: A generalized data meta-model for production companies ontology definition. Int. J. Syst. Appl. Eng. Dev. 2, 191–202 (2008)

    Google Scholar 

  5. Dalibor, M., Michael, J., Rumpe, B., Varga, S., Wortmann, A.: Towards a model-driven architecture for interactive digital twin cockpits. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 377–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_28

    Chapter  Google Scholar 

  6. Desai, N., Ananya, S.K., Bajaj, L., Periwal, A., Desai, S.R.: Process parameter monitoring and control using digital twin. In: Auer, M.E., Ram B., K. (eds.) REV2019 2019. LNNS, vol. 80, pp. 74–80. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23162-0_8

    Chapter  Google Scholar 

  7. Gomez-Escalonilla, J., Garijo, D., Valencia, O., Rivero, I.: Development of efficient high-fidelity solutions for virtual fatigue testing. In: Niepokolczycki, A., Komorowski, J. (eds.) ICAF 2019. LNME, pp. 187–200. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21503-3_15

    Chapter  Google Scholar 

  8. Gosavi, A., et al.: Simulation-Based Optimization. Springer, Heidelberg (2015). https://doi.org/10.1007/978-1-4899-7491-4

    Book  MATH  Google Scholar 

  9. Hu, L., et al.: Modeling of cloud-based digital twins for smart manufacturing with MT connect. Proc. Manuf. 26, 1193–1203 (2018)

    Google Scholar 

  10. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018)

    Article  Google Scholar 

  11. Ladj, A., Wang, Z., Meski, O., Belkadi, F., Ritou, M., Da Cunha, C.: A knowledge-based digital shadow for machining industry in a digital twin perspective. J. Manuf. Syst. 58, 168–179 (2021)

    Article  Google Scholar 

  12. Liau, Y., Lee, H., Ryu, K.: Digital twin concept for smart injection molding. In: IOP Conference Series: Materials Science and Engineering, vol. 324, p. 012077 (2018)

    Google Scholar 

  13. Liebenberg, M., Jarke, M.: Information systems engineering with digital shadows: concept and case studies. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 70–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_5

    Chapter  Google Scholar 

  14. Loucopoulos, P., Kavakli, E., Chechina, N.: Requirements engineering for cyber physical production systems. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 276–291. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_18

    Chapter  Google Scholar 

  15. Luo, W., Hu, T., Zhang, C., Wei, Y.: Digital twin for CNC machine tool: modeling and using strategy. J. Ambient Intell. Humaniz. Comput. 10(3), 1129–1140 (2019)

    Article  Google Scholar 

  16. Mayr, H.C., Thalheim, B.: The triptych of conceptual modeling. Softw. Syst. Model. 20(1), 7–24 (2020). https://doi.org/10.1007/s10270-020-00836-z

    Article  Google Scholar 

  17. Mujber, T., Szecsi, T., Hashmi, M.: Virtual reality applications in manufacturing process simulation. J. Mater. Process. Technol. 155-156, 1834–1838 (2004)

    Google Scholar 

  18. Parri, J., Patara, F., Sampietro, S., Vicario, E.: A framework for model-driven engineering of resilient software-controlled systems. Computing 103(4), 589–612 (2021)

    Article  MathSciNet  Google Scholar 

  19. Quix, C., Hai, R., Vatov, I.: Metadata extraction and management in data lakes with GEMMS. Complex Syst. Inf. Model. Q. 9, 67–83 (2016)

    Google Scholar 

  20. Schmertosch, T., Krabbes, M.: Automatisierung 4.0: Objektorientierte Entwicklung modularer Maschinen für die digitale Produktion. Carl Hanser Verlag (2018)

    Google Scholar 

  21. Schuh, G., Gützlaff, A., Sauermann, F., Maibaum, J.: Digital shadows as an enabler for the internet of production. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D. (eds.) APMS 2020. IAICT, vol. 591, pp. 179–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57993-7_21

    Chapter  Google Scholar 

  22. Schuh, G., Kelzenberg, C., Wiese, J., Ochel, T.: Data structure of the digital shadow for systematic knowledge management systems in single and small batch production. Proc. CIRP 84, 1094–1100 (2019)

    Article  Google Scholar 

  23. Schuh, G., Prote, J.-P., Gützlaff, A., Thomas, K., Sauermann, F., Rodemann, N.: Internet of production: rethinking production management. In: Wulfsberg, J.P., Hintze, W., Behrens, B.-A. (eds.) Production at the Leading Edge of Technology, pp. 533–542. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-60417-5_53

    Chapter  Google Scholar 

  24. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Heidelberg (1973)

    Book  Google Scholar 

  25. Urbina Coronado, P.D., Lynn, R., Louhichi, W., Parto, M., Wescoat, E., Kurfess, T.: Part data integration in the shop floor digital twin: mobile and cloud technologies to enable a manufacturing execution system. J. Manuf. Syst. 48, 25–33 (2018). Special Issue on Smart Manufacturing

    Article  Google Scholar 

  26. VDI: Industrie 4.0 - Technical Assets - Basic terminology concepts, life cycles and administration models (2016)

    Google Scholar 

  27. Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design. Elsevier (2011)

    Google Scholar 

  28. White, S.A.: Introduction to BPMN. IBM Cooper. 2, 1–26 (2004)

    Google Scholar 

  29. Wortmann, A., Barais, O., Combemale, B., Wimmer, M.: Modeling languages in industry 4.0: an extended systematic mapping study. Softw. Syst. Model. 19(1), 67–94 (2020)

    Article  Google Scholar 

  30. Zambal, S., Eitzinger, C., Clarke, M., Klintworth, J., Mechin, P.: A digital twin for composite parts manufacturing: effects of defects analysis based on manufacturing data. In: International Conference on Industrial Informatics (INDIN 2018), pp. 803–808. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Michael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Becker, F. et al. (2021). A Conceptual Model for Digital Shadows in Industry and Its Application. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds) Conceptual Modeling. ER 2021. Lecture Notes in Computer Science(), vol 13011. Springer, Cham. https://doi.org/10.1007/978-3-030-89022-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89022-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89021-6

  • Online ISBN: 978-3-030-89022-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics