On the Provable Security Against Truncated Impossible Differential Cryptanalysis for AES in the Master-Key Setting | SpringerLink
Skip to main content

On the Provable Security Against Truncated Impossible Differential Cryptanalysis for AES in the Master-Key Setting

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13007))

Included in the following conference series:

  • 786 Accesses

Abstract

Impossible differential cryptanalysis is a powerful cryptanalysis technique of block ciphers. Length of impossible differentials is important for the security evaluation of a block cipher against impossible differential cryptanalysis. Many previous studies on finding impossible differentials of AES assumed that round keys are independent and uniformly random. There are few results on security evaluation of AES in the master-key setting. In ASIACRYPT 2020, Hu et al. redefined impossible differential with the key schedule considered, and showed that there exists no one-byte active input and one-byte active output impossible differential for 5-round AES-128 even considering the relations of 3-round keys. In this paper, we prove theoretically that even though the relations of all round keys are considered, there do not exist three kinds of truncated impossible differentials for 5-round AES: (1) the input truncated differences are nonzero only in any diagonal and the output truncated differences are nonzero only in any inverse diagonal; (2) the input truncated differences are nonzero only in any two diagonals and the output truncated differences are nonzero only in any inverse diagonal; (3) the input truncated differences are nonzero only in any diagonal and the output truncated differences are nonzero only in any two inverse diagonals. Furthermore, for any given truncated differentials of these three kinds, the lower bounds of the number of master keys such that the truncated differentials are possible for 5-round AES-128 are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahrak, B., Aref, M.R.: Impossible differential attack on seven-round AES-128. IET Inf. Secur. 2(2), 28–32 (2008)

    Article  Google Scholar 

  2. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key recovery attacks on reduced-round AES with practical data and memory complexities. J. Cryptol. 33(3), 1003–1043 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bardeh, N.G., Rønjom, S.: The exchange attack: how to distinguish six rounds of AES with \(2^{88.2}\)chosen plaintexts. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 347–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_12

    Chapter  Google Scholar 

  4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_2

    Chapter  Google Scholar 

  5. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael. In: The 3rd AES Conference (2000)

    Google Scholar 

  6. Boura, C., Lallemand, V., Naya-Plasencia, M., Suder, V.: Making the impossible possible. J. Cryptol. 31(1), 101–133 (2018)

    Article  MathSciNet  Google Scholar 

  7. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_10

    Chapter  Google Scholar 

  8. Chen, J., Wang, M., Preneel, B.: Impossible differential cryptanalysis of the lightweight block ciphers TEA, XTEA and HIGHT. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 117–137. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31410-0_8

    Chapter  Google Scholar 

  9. Cheon, J.H., Kim, M.J., Kim, K., Jung-Yeun, L., Kang, S.W.: Improved impossible differential cryptanalysis of Rijndael and Crypton. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 39–49. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45861-1_4

    Chapter  Google Scholar 

  10. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_23

    Chapter  MATH  Google Scholar 

  11. Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: The retracing boomerang attack. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 280–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_11

    Chapter  Google Scholar 

  12. Ferguson, N., et al.: Improved cryptanalysis of Rijndael. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_15

    Chapter  Google Scholar 

  13. Leurent, G., Pernot, C.: New representations of the AES key schedule. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 54–84. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_3

    Chapter  Google Scholar 

  14. Grassi, L.: Mixture differential cryptanalysis: New approaches for distinguishers and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2), 133–160 (2018)

    Article  Google Scholar 

  15. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its applications to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)

    Google Scholar 

  16. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of 5-round AES. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_10

    Chapter  Google Scholar 

  17. Hu, K., Cui, T., Gao, C., Wang, M.: Towards key-dependent integral and impossible differential distinguishers on 5-round AES. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp. 139–162. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7_7

  18. Hu, X., Li, Y., Jiao, L., Tian, S., Wang, M.: Mind the propagation of states. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 415–445. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_14

    Chapter  Google Scholar 

  19. Kanda, M., Matsumoto, T.: Security of camellia against truncated differential cryptanalysis. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 286–299. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X_24

    Chapter  Google Scholar 

  20. Knudsen, L.R.: DEAL - a 128-bit cipher. Technical report, Department of Informatics, University of Bergen, Norway (1998)

    Google Scholar 

  21. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossible differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-8_20

    Chapter  Google Scholar 

  22. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 217–243. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_8

    Chapter  Google Scholar 

  23. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New insights on AES-Like SPN ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 605–624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_22

    Chapter  Google Scholar 

  24. Sun, B., Liu, M., Guo, J., Rijmen, V., Li, R.: Provable security evaluation of structures against impossible differential and zero correlation linear cryptanalysis. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 196–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_8

    Chapter  Google Scholar 

  25. Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossible differential cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 398–411. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_25

    Chapter  Google Scholar 

  26. Wang, Q., Jin, C.: Upper bound of the length of truncated impossible differentials for AES. Des. Codes Crypt. 86(7), 1541–1552 (2017). https://doi.org/10.1007/s10623-017-0411-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Q., Jin, C.: More accurate results on the provable security of AES against impossible differential cryptanalysis. Des. Codes Crypt. 87(12), 3001–3018 (2019). https://doi.org/10.1007/s10623-019-00660-7

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, W., Wu, W., Feng, D.: New results on impossible differential cryptanalysis of reduced AES. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 239–250. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76788-6_19

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their helpful comments and suggestions. This work was supported by the National Cryptography Development Fund of China under grant numbers MMJJ20170103 and MMJJ20180204.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, X., Tan, L., Xu, H., Qi, W. (2021). On the Provable Security Against Truncated Impossible Differential Cryptanalysis for AES in the Master-Key Setting. In: Yu, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2021. Lecture Notes in Computer Science(), vol 13007. Springer, Cham. https://doi.org/10.1007/978-3-030-88323-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88323-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88322-5

  • Online ISBN: 978-3-030-88323-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics