Defining Beneficiaries of Emerging Data Infrastructures Towards Effective Data Appropriation | SpringerLink
Skip to main content

Defining Beneficiaries of Emerging Data Infrastructures Towards Effective Data Appropriation

Insights from the Swedish Space Data Lab

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2021)

Abstract

The increasing collection and usage of data and data analytics has prompted development of Data Labs. These labs are (ideally) a way for multiple beneficiaries to make use of the same data in ways that are value-generating for all. However, establishing data labs requires the mobilization of various infrastructural elements, such as beneficiaries, offerings and needed analytics talent, all of which are ambiguous and uncertain. The aim of this paper is to examine how such beneficiaries can be identified and understood for the nascent Swedish space data lab. The paper reports on the development of persona descriptions that aim to support and represent the needs of key beneficiaries of earth observation data. Our main results include three thorough persona descriptions that represent the lab’s respective beneficiaries and their distinct characteristics. We discuss the implications of the personas on addressing the infrastructural challenges, as well as the lab’s design. We conclude that personas provide emerging data labs with relatively stable beneficiary archetypes that supports the further development of the other infrastructure components. More research is needed to better understand how these persona descriptions may evolve, as well as how they may influence the continuous development process of the space data lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jetzek, T., Avital, M., Bjorn-Andersen, N.: Data-driven innovation through open government data. J. Theoret. Appl. Electron. Commer. Res. 9(2), 100–120 (2014)

    Article  Google Scholar 

  2. OECD: The Path to Becoming a Data-Driven Public Sector. OECD (2019). https://doi.org/10.1787/059814a7-en

  3. Dinesh, A.: Building the smarter state: the role of data labs. Medium, 13 December 2017. https://medium.com/data-labs/building-the-smarter-state-the-role-of-data-labs-5b5428920f0f. Accessed 19 Nov 2019

  4. Kremser, W., Brunauer, R.: Do we have a data culture?. In: Data Science – Analytics and Applications, Wiesbaden, pp. 83–87 (2019). https://doi.org/10.1007/978-3-658-27495-5_11

  5. Vinnova: Datalabb och datafabrik som nationell resurs (2020). https://www.vinnova.se/e/datadriven-innovation/datalabb-datafabrik/. Accessed 07 Feb 2020

  6. Yang, C., Huang, Q., Li, Z., Liu, K., Hu, F.: Big Data and cloud computing: innovation opportunities and challenges. Int. J. Digit. Earth 10(1), 13–53 (2017)

    Article  Google Scholar 

  7. Goodwin, K.: Designing for the Digital Age: How to Create Human-Centered Products and Services. Wiley, Hoboken (2011)

    Google Scholar 

  8. Nielsen, L.: Personas-User Focused Design. Springer, London (2019). https://doi.org/10.1007/978-1-4471-7427-1

    Book  Google Scholar 

  9. Bright, J., Ganesh, B., Seidelin, C., Vogl, T.M.: Data science for local government. SSRN J. (2019). https://doi.org/10.2139/ssrn.3370217

  10. Rizk, A.: Data-driven innovation: an exploration of outcomes and processes within federated networks. Doctoral thesis, Luleå University of Technology, Luleå (2020)

    Google Scholar 

  11. Rizk, A., Ståhlbröst, A., Elragal, A.: Data-driven innovation processes within federated networks. Eur. J. Innov. Manag. (2020). https://doi.org/10.1108/EJIM-05-2020-0190

  12. Lyon, F., Gyateng, T., Pritchard, D., Vaze, P., Vickers, I., Webb, N.: Opening access to administrative data for evaluating public services: the case of the Justice Data Lab. Evaluation 21(2), 232–247 (2015). https://doi.org/10.1177/1356389015577507

    Article  Google Scholar 

  13. Vinnova: Datalabb och datafabrik som nationell resurs. Vinnova, Sveriges innovationsmyndighet, 2019–01038 (2019). https://www.vinnova.se/globalassets/utlysningar/2015-07023/omgangar/60709b5a-db86-421c-bb86-05616f1f2d1e.pdf932684.pdf. Accessed 24 Nov 2019

  14. Paine, D., Lee, C.P.: Producing data, producing software: developing a radio astronomy research infrastructure. In: 2014 IEEE 10th International Conference on e-Science, vol. 1, pp. 231–238 (2014). https://doi.org/10.1109/eScience.2014.41

  15. Bietz, M.J., Paine, D., Lee, C.P.: The work of developing cyberinfrastructure middleware projects. In: Proceedings of the 2013 Conference on Computer Supported Cooperative Work, pp. 1527–1538 (2013)

    Google Scholar 

  16. Star, S.L., Ruhleder, K.: Steps toward an ecology of infrastructure: design and access for large information spaces. Inf. Syst. Res. 7(1), 111–134 (1996)

    Article  Google Scholar 

  17. Demchenko, Y., Grosso, P., De Laat, C., Membrey, P.: Addressing big data issues in scientific data infrastructure. In: 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 48–55 (2013)

    Google Scholar 

  18. Lee, C.P., Dourish, P., Mark, G.: The human infrastructure of cyberinfrastructure. In: Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work, Banff, Alberta, Canada, pp. 483–492 (2006). https://doi.org/10.1145/1180875.1180950

  19. ESA: Copernicus Overview. United Space in Europe (2020). http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Overview4. Accessed 26 Jan 2020

  20. Killough, B.: Overview of the open data cube initiative. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 8629–8632 (2018). https://doi.org/10.1109/IGARSS.2018.8517694

  21. Lewis, A., et al.: The Australian geoscience data cube—Foundations and lessons learned. Remote Sens. Environ. 202, 276–292 (2017). https://doi.org/10.1016/j.rse.2017.03.015

    Article  Google Scholar 

  22. Adlin, T., et al.: Putting personas to work. In: CHI 2006 Extended Abstracts on Human Factors in Computing Systems, pp. 13–16 (2006)

    Google Scholar 

  23. Cooper, A.: The Inmates are Running the Asylum. SAMS, Macmillan, Indianapolis, IA (1999)

    Book  Google Scholar 

  24. Nielsen, L., Jung, S.-G., An, J., Salminen, J., Kwak, H., Jansen, B.J.: Who are your users? Comparing media professionals’ preconception of users to data-driven personas. In: Proceedings of the 29th Australian Conference on Computer-Human Interaction, Brisbane, Queensland, Australia, pp. 602–606 (2017). https://doi.org/10.1145/3152771.3156178

  25. Floyd, I.R., Cameron Jones, M., Twidale, M.B.: resolving incommensurable debates: a preliminary identification of persona kinds, attributes, and characteristics. Artifact 2(1), 12–26 (2008). https://doi.org/10.1080/17493460802276836

    Article  Google Scholar 

  26. Gibbs, G.R.: Analyzing Qualitative Data, vol. 8. SAGE Publications, London (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aya Rizk .

Editor information

Editors and Affiliations

Appendix

Appendix

figure a
figure b

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rizk, A., Seidelin, C., Kovács, G., Liwicki, M., Brännvall, R. (2021). Defining Beneficiaries of Emerging Data Infrastructures Towards Effective Data Appropriation. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2021. Communications in Computer and Information Science, vol 1486. Springer, Cham. https://doi.org/10.1007/978-3-030-88304-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88304-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88303-4

  • Online ISBN: 978-3-030-88304-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics