The Adaptive Calibration Method for Single-Beam Distance Sensors | SpringerLink
Skip to main content

The Adaptive Calibration Method for Single-Beam Distance Sensors

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12876))

Included in the following conference series:

Abstract

The agility process used in Industry 4.0 increasingly influences on the location changes of the used production resources. Ensuring safety in a production environment is critical, especially when objects are moving or change their location e.g. transport trolleys, Autonomous Guided Vehicles or mobile robots. One of the methods of moving object discovery by other objects, e.g. AGV is application of distance sensors. Different sensors enable various measurement quality. In order to improve their accuracy, diverse calibration and filtration methods are often used. The article presents adaptive curve fitting method to increase accuracy of measurements for single-beam distance sensors. The research results of calibration were presented based on example of low cost ultrasounds and LiDARs sensors. Proposed adaptive curve fitting method enables to improve measurement accuracy even by 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, S., Wan, J., Li, D., Zhang, C.: Implementing smart factory of Industrie 4.0: an outlook. Int. J. Distrib. Sens. Netw. 12, 3159805 (2016) https://doi.org/10.1155/2016/3159805.

  2. Botta, A., de Donato, W., Persico, V., Pescapé, A.: Integration of Cloud computing and Internet of Things: a survey. Futur. Gener. Comput. Syst. 56, 684–700 (2016). https://doi.org/10.1016/j.future.2015.09.021

    Article  Google Scholar 

  3. Shafiq, S.I., Sanin, C., Szczerbicki, E., Toro, C.: Virtual engineering object / virtual engineering process: a specialized form of cyber physical system for Industrie 4.0. Procedia Comput. Sci. 60, 1146–1155 (2015). https://doi.org/10.1016/j.procs.2015.08.166.

  4. Andresen, S.H., Evensen, K.: Standardisation and trends – why is standardisation of ITS needed? In: Intelligent Transport Systems. p. 161 (2003)

    Google Scholar 

  5. Shi, D., Mi, H., Collins, E.G., Wu, J.: An indoor low-cost and high-accuracy localization approach for AGVs. IEEE Access. 8, 50085–50090 (2020). https://doi.org/10.1109/ACCESS.2020.2980364

    Article  Google Scholar 

  6. Kyrkjebø, E.: Inertial human motion estimation for physical human-robot interaction using an interaction velocity update to reduce drift. In: Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. ACM, Chicago IL USA, pp. 163–164 (2018). https://doi.org/10.1145/3173386.3176955.

  7. Realyvásquez-Vargas, A., et al.: Introduction and configuration of a collaborative robot in an assembly task as a means to decrease occupational risks and increase efficiency in a manufacturing company. Robot. Comput.-Integr. Manuf. 57, 315–328 (2019). https://doi.org/10.1016/j.rcim.2018.12.015

    Article  Google Scholar 

  8. Flak, J., Gaj, P., Tokarz, K., Wideł, S., Ziębiński, A.: Remote monitoring of geological activity of inclined regions – the concept. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol. 39, pp. 292–301. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02671-3_34

    Chapter  Google Scholar 

  9. Moleda, M., Momot, A., Mrozek, D.: Predictive maintenance of boiler feed water pumps using SCADA data. Sensors 20, 571 (2020). https://doi.org/10.3390/s20020571

    Article  Google Scholar 

  10. Schuh, G., Potente, T., Varandani, R., Hausberg, C., Fränken, B.: Collaboration moves productivity to the next level. Procedia CIRP 17, 3–8 (2014). https://doi.org/10.1016/j.procir.2014.02.037

    Article  Google Scholar 

  11. Grzechca, D., Paszek, K.: Short-term positioning accuracy based on mems sensors for smart city solutions. (2019). https://doi.org/10.24425/MMS.2019.126325.

  12. Tokarz, K., Czekalski, P., Sieczkowski, W.: Integration of ultrasonic and inertial methods in indoor navigation system. Theor. Appl. Inform. 26, 107–117 (2015)

    Google Scholar 

  13. Fleming, W.J.: Overview of automotive sensors. IEEE Sens. J. 1, 296–308 (2001). https://doi.org/10.1109/7361.983469

    Article  Google Scholar 

  14. el Popovic, R., Randjelovic, Z., Manic, D.: Integrated Hall-effect magnetic sensors. Sens. Actuators A: Phys 91, 46–50 (2001)

    Article  Google Scholar 

  15. Paryanto, Brossog, M., Bornschlegl, M., Franke, J.: Reducing the energy consumption of industrial robots in manufacturing systems. Int. J. Adv. Manuf. Technol. 78, 1315–1328 (2015). https://doi.org/10.1007/s00170-014-6737-z

  16. Grzechca, D., Ziębiński, A., Rybka, P.: Enhanced reliability of ADAS sensors based on the observation of the power supply current and neural network application. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 215–226. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67077-5_21

    Chapter  Google Scholar 

  17. Ziebinski, A., Bregulla, M., Fojcik, M., Kłak, S.: Monitoring and controlling speed for an autonomous mobile platform based on the hall sensor. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 249–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67077-5_24

    Chapter  Google Scholar 

  18. Wen, S., Othman, K., Rad, A., Zhang, Y., Zhao, Y.: Indoor SLAM using laser and camera with closed-loop controller for NAO humanoid robot. Abstr. Appl. Anal. 2014, 1–8 (2014). https://doi.org/10.1155/2014/513175

    Article  MATH  Google Scholar 

  19. Jia, X., Hu, Z., Guan, H.: A new multi-sensor platform for adaptive driving assistance system (ADAS). In: 2011 9th World Congress on Intelligent Control and Automation, pp. 1224–1230 (2011). https://doi.org/10.1109/WCICA.2011.5970711

  20. Ziebinski, A., Cupek, R., Nalepa, M.: Obstacle avoidance by a mobile platform using an ultrasound sensor. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 238–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67077-5_23

    Chapter  Google Scholar 

  21. Bertozzi, M., Broggi, A.: GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7, 62–81 (1998). https://doi.org/10.1109/83.650851

    Article  Google Scholar 

  22. Grzechca, D.E., Pelczar, P., Chruszczyk, L.: Analysis of object location accuracy for iBeacon technology based on the RSSI path loss model and fingerprint map. Int. J. Electron. Telecommun. 62, (2016). https://doi.org/10.1515/eletel-2016-0051

  23. Cupek, R., et al.: Autonomous guided vehicles for smart industries – the state-of-the-art and research challenges. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12141, pp. 330–343. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50426-7_25

    Chapter  Google Scholar 

  24. Karger, D.W., Bayha, F.H.: Engineered Work Measurement: The Principles, Techniques, and Data of Methods-Time Measurement Background and Foundations of Work Measurement and Methods-Time Measurement, Plus Other Related Material. Industrial Press Inc. (1987)

    Google Scholar 

  25. Roth, H., Schilling, K.: Navigation and docking manoeuvres of mobile robots in industrial environments. In: 24th Annual Conference of the IEEE Industrial Electronics Society, Germany, pp. 2458–2462 IEEE (1998). https://doi.org/10.1109/IECON.1998.724112

  26. Mörtl, A., Lawitzky, M., Kucukyilmaz, A., Sezgin, M., Basdogan, C., Hirche, S.: The role of roles: Physical cooperation between humans and robots. Int. J. Robot. Res. 31, 1656–1674 (2012). https://doi.org/10.1177/0278364912455366

    Article  Google Scholar 

  27. Grzechca, D., et al: Accuracy analysis for object positioning on a circular trajectory based on the UWB location system. In: 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, pp. 69–74. IEEE (2018). https://doi.org/10.1109/TCSET.2018.8336158

  28. Lindner, M., Schiller, I., Kolb, A., Koch, R.: Time-of-flight sensor calibration for accurate range sensing. Comput. Vis. Image Underst. 114, 1318–1328 (2010). https://doi.org/10.1016/j.cviu.2009.11.002

    Article  Google Scholar 

  29. Guan, H., Li, L., Jia, X.: Multi-sensor fusion vehicle positioning based on Kalman Filter. Presented at the Information Science and Technology (ICIST). In: 2013 International Conference on (2013)

    Google Scholar 

  30. Sidek, O., Quadri, S.A.: A review of data fusion models and systems. Int. J. Image Data Fus. 3, 3–21 (2012). https://doi.org/10.1080/19479832.2011.645888

    Article  Google Scholar 

  31. Sheik-Bahae, M., Said, A.A., Wei, T.-H., Hagan, D.J., Van Stryland, E.W.: Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990). https://doi.org/10.1109/3.53394

    Article  Google Scholar 

  32. Bhardwaj, B., et al.: Tracking of localized sensor node using single-beam echo sounder. In: International Conference on Communication and Signal Processing, India, pp. 0858–0861. IEEE (2020). https://doi.org/10.1109/ICCSP48568.2020.9182124

  33. Dorsch, R.G., Häusler, G., Herrmann, J.M.: Laser triangulation: fundamental uncertainty in distance measurement. Appl. Opt. 33, 1306 (1994). https://doi.org/10.1364/AO.33.001306

    Article  Google Scholar 

  34. Genta, G., Minetola, P., Barbato, G.: Calibration procedure for a laser triangulation scanner with uncertainty evaluation. Opt. Lasers Eng. 86, 11–19 (2016). https://doi.org/10.1016/j.optlaseng.2016.05.005

    Article  Google Scholar 

  35. Bhandari, A., all: Super-resolved time-of-flight sensing via FRI sampling theory. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, pp. 4009–4013. IEEE (2016). https://doi.org/10.1109/ICASSP.2016.7472430

Download references

Acknowledgements

The research leading to these results received funding from the Norway Grants 2014–2021, which is operated by the National Centre for Research and Development under the project “Automated Guided Vehicles integrated with Collaborative Robots for Smart Industry Perspective” (Project Contract no.: NOR/POLNOR/CoBotAGV/0027/2019 -00) and partially by the Statutory Research funds of the Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland (grant No no BK-281/RAU8/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Biernacki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biernacki, P., Ziębiński, A., Grzechca, D. (2021). The Adaptive Calibration Method for Single-Beam Distance Sensors. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2021. Lecture Notes in Computer Science(), vol 12876. Springer, Cham. https://doi.org/10.1007/978-3-030-88081-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88081-1_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88080-4

  • Online ISBN: 978-3-030-88081-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics