PhrasIS: Phrase Inference and Similarity Benchmark | SpringerLink
Skip to main content

Abstract

We present PhrasIS, a dataset of Phrase pairs with Inference and Similarity annotations for the evaluation of semantic representations. This dataset fills the gap between word and sentence-level datasets, allowing to evaluate compositional models at a finer granularity than sentences. Contrary to other datasets, the phrase pairs are extracted from naturally occurring text in image captions and news, and were annotated by experts. We analyze the dataset, showing the relation between inference labels and similarity scores, and evaluated several well-known techniques obtaining satisfactory performance. The gap with respect to annotator agreement shows that there is plenty of room for improvement. In addition, we introduce the use of similarity and relatedness inference relations, showing that they are useful for inference. With 10K phrase pairs split in development and test, the dataset is an excellent benchmark for testing meaning representation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 28599
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 35749
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agirre, E., et al.: SemEval-2015 task 2: semantic textual similarity, english, spanish and pilot on interpretability. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). Denver, CO (2015)

    Google Scholar 

  2. Agirre, E., et al.: SemEval-2014 task 10: multilingual semantic textual similarity. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 81–91. Association for Computational Linguistics, Dublin (2014). http://www.aclweb.org/anthology/S14-2010

  3. Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A.: SemEval-2012 task 6: a pilot on semantic textual similarity. In: *SEM 2012: The First Joint Conference on Lexical and Computational Semantics, pp. 385–393. Association for Computational Linguistics, Montréal (2012). http://www.aclweb.org/anthology/S12-1051

  4. Agirre, E., Gonzalez-Agirre, A., Lopez-Gazpio, I., Maritxalar, M., Rigau, G., Uria, L.: Semeval-2016 task 2: interpretable semantic textual similarity. In: Proceedings of SemEval, pp. 512–524 (2016)

    Google Scholar 

  5. Bentivogli, L., Bernardi, R., Marelli, M., Menini, S., Baroni, M., Zamparelli, R.: SICK through the SemEval glasses. Lang. Res. Eval. 50(1), 95–124 (2016). https://doi.org/10.1007/s10579-015-9332-5

    Article  Google Scholar 

  6. Best, C., van der Goot, E., Blackler, K., Garcia, T., Horby, D.: Europe media monitor - system description. In: EUR Report 22173-En. Ispra, Italy (2005)

    Google Scholar 

  7. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics (2015)

    Google Scholar 

  8. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  9. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment for machine learning. In: BigLearn, NIPS Workshop. No. EPFL-CONF-192376 (2011)

    Google Scholar 

  10. Dagan, I., Dolan, B., Magnini, B., Roth, D.: Recognizing textual entailment: rational, evaluation and approaches. Nat. Lang. Eng. 16, 105 (2010). http://journals.cambridge.org/article_S1351324909990234

  11. Dolan, B., Quirk, C., Brockett, C.: Unsupervised construction of large paraphrase corpora: exploiting massively parallel news sources. In: COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics, p. 350 (2004)

    Google Scholar 

  12. Ganitkevitch, J., Van Durme, B., Callison-Burch, C.: PPDB: the paraphrase database. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 758–764. Association for Computational Linguistics, Atlanta (2013). http://www.aclweb.org/anthology/N13-1092

  13. Hill, F., Reichart, R., Korhonen, A.: Simlex-999: evaluating semantic models with (genuine) similarity estimation. Computational Linguistics (2015)

    Google Scholar 

  14. Jurgens, D., Pilehvar, M.T., Navigli, R.: Semeval-2014 task 3: cross-level semantic similarity. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 17–26. Association for Computational Linguistics and Dublin City University, Dublin (2014). http://www.aclweb.org/anthology/S14-2003

  15. Korkontzelos, I., Zesch, T., Zanzotto, F.M., Biemann, C.: Semeval-2013 task 5: evaluating phrasal semantics. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), pp. 39–47. Association for Computational Linguistics, Atlanta, Georgia (2013). http://www.aclweb.org/anthology/S13-2007

  16. Litkowski, C.K., Hargraves, O.: Semeval-2007 task 06: word-sense disambiguation of prepositions. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007), pp. 24–29. Association for Computational Linguistics (2007). http://aclweb.org/anthology/S07-1005

  17. MacCartney, B., Manning, C.D.: Natural logic for textual inference. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 193–200. Association for Computational Linguistics (2007)

    Google Scholar 

  18. Mitchell, J., Lapata, M.: Composition in distributional models of semantics. Cogn. Sci. 34(8), 1388–1429 (2010). https://doi.org/10.1111/j.1551-6709.2010.01106.x

    Article  Google Scholar 

  19. Pavlick, E., Bos, J., Nissim, M., Beller, C., Van Durme, B., Callison-Burch, C.: Adding semantics to data-driven paraphrasing. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pp. 1512–1522. Association for Computational Linguistics (2015). http://aclweb.org/anthology/P15-1146

  20. Pavlick, E., Rastogi, P., Ganitkevitch, J., Van Durme, B., Callison-Burch, C.: PPDB 2.0: better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classification. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pp. 425–430. Association for Computational Linguistics, Beijing (2015). http://www.aclweb.org/anthology/P15-2070

  21. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet::similarity: measuring the relatedness of concepts. In: Demonstration papers at HLT-NAACL 2004, pp. 38–41. Association for Computational Linguistics (2004)

    Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. EMNLP. 14, 1532–43 (2014)

    Google Scholar 

  23. Rashtchian, C., Young, P., Hodosh, M., Hockenmaier, J.: Collecting image annotations using Amazon’s mechanical turk. In: Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk, pp. 139–147. CSLDAMT 2010, Stroudsburg (2010). http://dl.acm.org/citation.cfm?id=1866696.1866717

  24. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965). https://doi.org/10.1145/365628.365657

  25. Shwartz, V., Dagan, I.: Adding context to semantic data-driven paraphrasing. In: Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics, pp. 108–113. Association for Computational Linguistics (2016). http://aclweb.org/anthology/S16-2013

  26. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pp. 1556–1566. Association for Computational Linguistics, Beijing (2015). http://www.aclweb.org/anthology/P15-1150

  27. Sang, E.F., Buchholz, S.: Introduction to the CoNLL-2000 shared task: chunking. In: Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, vol. 7, pp. 127–132. Association for Computational Linguistics (2000)

    Google Scholar 

  28. Wieting, J., Bansal, M., Gimpel, K., Livescu, K.: From paraphrase database to compositional paraphrase model and back. Trans. Assoc. Comput. Linguist. 3, 345–358 (2015). https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/571

  29. Zettlemoyer, L.S., Collins, M.: Online learning of relaxed CCG grammars for parsing to logical form. In: Proceedings of EMNLP-CoNLL, pp. 678–687. Association for Computational Linguistics (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Lopez-Gazpio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopez-Gazpio, I. et al. (2022). PhrasIS: Phrase Inference and Similarity Benchmark. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_25

Download citation

Publish with us

Policies and ethics