Abstract
We present PhrasIS, a dataset of Phrase pairs with Inference and Similarity annotations for the evaluation of semantic representations. This dataset fills the gap between word and sentence-level datasets, allowing to evaluate compositional models at a finer granularity than sentences. Contrary to other datasets, the phrase pairs are extracted from naturally occurring text in image captions and news, and were annotated by experts. We analyze the dataset, showing the relation between inference labels and similarity scores, and evaluated several well-known techniques obtaining satisfactory performance. The gap with respect to annotator agreement shows that there is plenty of room for improvement. In addition, we introduce the use of similarity and relatedness inference relations, showing that they are useful for inference. With 10K phrase pairs split in development and test, the dataset is an excellent benchmark for testing meaning representation systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agirre, E., et al.: SemEval-2015 task 2: semantic textual similarity, english, spanish and pilot on interpretability. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). Denver, CO (2015)
Agirre, E., et al.: SemEval-2014 task 10: multilingual semantic textual similarity. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 81–91. Association for Computational Linguistics, Dublin (2014). http://www.aclweb.org/anthology/S14-2010
Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A.: SemEval-2012 task 6: a pilot on semantic textual similarity. In: *SEM 2012: The First Joint Conference on Lexical and Computational Semantics, pp. 385–393. Association for Computational Linguistics, Montréal (2012). http://www.aclweb.org/anthology/S12-1051
Agirre, E., Gonzalez-Agirre, A., Lopez-Gazpio, I., Maritxalar, M., Rigau, G., Uria, L.: Semeval-2016 task 2: interpretable semantic textual similarity. In: Proceedings of SemEval, pp. 512–524 (2016)
Bentivogli, L., Bernardi, R., Marelli, M., Menini, S., Baroni, M., Zamparelli, R.: SICK through the SemEval glasses. Lang. Res. Eval. 50(1), 95–124 (2016). https://doi.org/10.1007/s10579-015-9332-5
Best, C., van der Goot, E., Blackler, K., Garcia, T., Horby, D.: Europe media monitor - system description. In: EUR Report 22173-En. Ispra, Italy (2005)
Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics (2015)
Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)
Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment for machine learning. In: BigLearn, NIPS Workshop. No. EPFL-CONF-192376 (2011)
Dagan, I., Dolan, B., Magnini, B., Roth, D.: Recognizing textual entailment: rational, evaluation and approaches. Nat. Lang. Eng. 16, 105 (2010). http://journals.cambridge.org/article_S1351324909990234
Dolan, B., Quirk, C., Brockett, C.: Unsupervised construction of large paraphrase corpora: exploiting massively parallel news sources. In: COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics, p. 350 (2004)
Ganitkevitch, J., Van Durme, B., Callison-Burch, C.: PPDB: the paraphrase database. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 758–764. Association for Computational Linguistics, Atlanta (2013). http://www.aclweb.org/anthology/N13-1092
Hill, F., Reichart, R., Korhonen, A.: Simlex-999: evaluating semantic models with (genuine) similarity estimation. Computational Linguistics (2015)
Jurgens, D., Pilehvar, M.T., Navigli, R.: Semeval-2014 task 3: cross-level semantic similarity. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 17–26. Association for Computational Linguistics and Dublin City University, Dublin (2014). http://www.aclweb.org/anthology/S14-2003
Korkontzelos, I., Zesch, T., Zanzotto, F.M., Biemann, C.: Semeval-2013 task 5: evaluating phrasal semantics. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), pp. 39–47. Association for Computational Linguistics, Atlanta, Georgia (2013). http://www.aclweb.org/anthology/S13-2007
Litkowski, C.K., Hargraves, O.: Semeval-2007 task 06: word-sense disambiguation of prepositions. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007), pp. 24–29. Association for Computational Linguistics (2007). http://aclweb.org/anthology/S07-1005
MacCartney, B., Manning, C.D.: Natural logic for textual inference. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 193–200. Association for Computational Linguistics (2007)
Mitchell, J., Lapata, M.: Composition in distributional models of semantics. Cogn. Sci. 34(8), 1388–1429 (2010). https://doi.org/10.1111/j.1551-6709.2010.01106.x
Pavlick, E., Bos, J., Nissim, M., Beller, C., Van Durme, B., Callison-Burch, C.: Adding semantics to data-driven paraphrasing. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pp. 1512–1522. Association for Computational Linguistics (2015). http://aclweb.org/anthology/P15-1146
Pavlick, E., Rastogi, P., Ganitkevitch, J., Van Durme, B., Callison-Burch, C.: PPDB 2.0: better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classification. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pp. 425–430. Association for Computational Linguistics, Beijing (2015). http://www.aclweb.org/anthology/P15-2070
Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet::similarity: measuring the relatedness of concepts. In: Demonstration papers at HLT-NAACL 2004, pp. 38–41. Association for Computational Linguistics (2004)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. EMNLP. 14, 1532–43 (2014)
Rashtchian, C., Young, P., Hodosh, M., Hockenmaier, J.: Collecting image annotations using Amazon’s mechanical turk. In: Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk, pp. 139–147. CSLDAMT 2010, Stroudsburg (2010). http://dl.acm.org/citation.cfm?id=1866696.1866717
Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965). https://doi.org/10.1145/365628.365657
Shwartz, V., Dagan, I.: Adding context to semantic data-driven paraphrasing. In: Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics, pp. 108–113. Association for Computational Linguistics (2016). http://aclweb.org/anthology/S16-2013
Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pp. 1556–1566. Association for Computational Linguistics, Beijing (2015). http://www.aclweb.org/anthology/P15-1150
Sang, E.F., Buchholz, S.: Introduction to the CoNLL-2000 shared task: chunking. In: Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, vol. 7, pp. 127–132. Association for Computational Linguistics (2000)
Wieting, J., Bansal, M., Gimpel, K., Livescu, K.: From paraphrase database to compositional paraphrase model and back. Trans. Assoc. Comput. Linguist. 3, 345–358 (2015). https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/571
Zettlemoyer, L.S., Collins, M.: Online learning of relaxed CCG grammars for parsing to logical form. In: Proceedings of EMNLP-CoNLL, pp. 678–687. Association for Computational Linguistics (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lopez-Gazpio, I. et al. (2022). PhrasIS: Phrase Inference and Similarity Benchmark. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-87869-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87868-9
Online ISBN: 978-3-030-87869-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)