Real-Time Dispatching with Local Search Improvement for Dynamic Ride-Sharing | SpringerLink
Skip to main content

Real-Time Dispatching with Local Search Improvement for Dynamic Ride-Sharing

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2021)

Abstract

Dynamic ride-sharing services such as UberPool or MOIA are becoming increasingly popular as they offer a cheap and flexible mode of transportation and reduce traffic compared to traditional taxi and ride-hailing services. One key optimization problem when operating ride-sharing services is the assignment of trip requests to vehicles to maximize the service rate while minimizing operational costs. In this work, we propose a real-time dispatching algorithm capable of quickly processing incoming trip requests. This dispatching algorithm is combined with a local search that aims to improve the current routing plan. Both algorithms are embedded into a planning and simulation framework for dynamic ride-sharing and evaluated through simulation studies on real-world datasets from Hamburg, New York City, and Chengdu. The results show that the local search improvement phase can improve the request acceptance rate as well as vehicle travel times. We achieve an average reduction of the request rejection rate by 1.62% points and a decrease in vehicle travel time per served request of 6.5%. We also study the influence of pre-booked rides and show that the local search yields even larger benefits when part of the trip requests are known in advance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Provided by PTV Group, Haid-und-Neu-Str. 15, 76131 Karlsruhe, Germany.

  2. 2.

    https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

  3. 3.

    https://outreach.didichuxing.com/appEn-vue/KDD_CUP_2020.

References

  1. Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D.: On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Natl. Acad. Sci. 114(3), 462–467 (2017). https://doi.org/10.1073/pnas.1611675114

    Article  Google Scholar 

  2. Alonso-Mora, J., Wallar, A., Rus, D.: Predictive routing for autonomous mobility-on-demand systems with ride-sharing. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3583–3590. IEEE, Vancouver (September 2017). https://doi.org/10.1109/IROS.2017.8206203

  3. Berbeglia, G., Cordeau, J.F., Laporte, G.: Dynamic pickup and delivery problems. Eur. J. Oper. Res. 202(1), 8–15 (2010). https://doi.org/10.1016/j.ejor.2009.04.024

    Article  MATH  Google Scholar 

  4. Chen, L., Gao, Y., Liu, Z., Xiao, X., Jensen, C.S., Zhu, Y.: PTrider: a price-and-time-aware ridesharing system. Proc. VLDB Endow. 11(12), 1938–1941 (2018). https://doi.org/10.14778/3229863.3236229

    Article  Google Scholar 

  5. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann. Oper. Res. 153(1), 29–46 (2007). https://doi.org/10.1007/s10479-007-0170-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. J. Exp. Algorithmics 21(1), 1–49 (2016). https://doi.org/10.1145/2886843

    Article  MathSciNet  MATH  Google Scholar 

  7. Funke, B., Grünert, T., Irnich, S.: Local search for vehicle routing and scheduling problems: review and conceptual integration. J. Heuristic 11(4), 267–306 (2005). https://doi.org/10.1007/s10732-005-1997-2

    Article  MATH  Google Scholar 

  8. Huang, Y., Bastani, F., Jin, R., Wang, X.S.: Large scale real-time ridesharing with service guarantee on road networks. Proc. VLDB Endow. 7(14), 2017–2028 (2014). https://doi.org/10.14778/2733085.2733106

    Article  Google Scholar 

  9. Lowalekar, M., Varakantham, P., Jaillet, P.: ZAC: A zone path construction approach for effective real-time ridesharing. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 29, no. 1, pp. 528–538 (2019)

    Google Scholar 

  10. Lowalekar, M., Varakantham, P., Jaillet, P.: Zone pAth Construction (ZAC) based approaches for effective real-time ridesharing. J. Artif. Intell. Res. 70, 119–167 (2021). https://doi.org/10.1613/jair.1.11998

    Article  MATH  Google Scholar 

  11. Ma, S., Zheng, Y., Wolfson, O.: T-share: a large-scale dynamic taxi ridesharing service. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, QLD, pp. 410–421. IEEE(April 2013). https://doi.org/10.1109/ICDE.2013.6544843

  12. Ma, S., Zheng, Y., Wolfson, O.: Real-time city-scale taxi ridesharing. IEEE Trans. Knowl. Data Eng. 27(7), 1782–1795 (2015). https://doi.org/10.1109/TKDE.2014.2334313

    Article  Google Scholar 

  13. Molenbruch, Y., Braekers, K., Caris, A.: Typology and literature review for dial-a-ride problems. Ann. Oper. Res. 259(1–2), 295–325 (2017). https://doi.org/10.1007/s10479-017-2525-0

    Article  MathSciNet  MATH  Google Scholar 

  14. Pouls, M., Meyer, A., Ahuja, N.: Idle vehicle repositioning for dynamic ride-sharing. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL 2020. LNCS, vol. 12433, pp. 507–521. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59747-4_33

    Chapter  Google Scholar 

  15. Riley, C., Legrain, A., Van Hentenryck, P.: Column generation for real-time ride-sharing operations. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 472–487. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_31

    Chapter  MATH  Google Scholar 

  16. Shah, S., Lowalekar, M., Varakantham, P.: Neural approximate dynamic programming for on-demand ride-pooling. Proc. AAAI Conf. Artif. Intell. 34(01), 507–515 (2020). https://doi.org/10.1609/aaai.v34i01.5388

    Article  Google Scholar 

  17. Uber: Uberpool (2021). https://www.uber.com/us/en/ride/uberpool. Accessed 08 Jan 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Pouls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pouls, M., Meyer, A., Glock, K. (2021). Real-Time Dispatching with Local Search Improvement for Dynamic Ride-Sharing. In: Mes, M., Lalla-Ruiz, E., Voß, S. (eds) Computational Logistics. ICCL 2021. Lecture Notes in Computer Science(), vol 13004. Springer, Cham. https://doi.org/10.1007/978-3-030-87672-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87672-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87671-5

  • Online ISBN: 978-3-030-87672-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics