VoxelEmbed: 3D Instance Segmentation and Tracking with Voxel Embedding based Deep Learning | SpringerLink
Skip to main content

VoxelEmbed: 3D Instance Segmentation and Tracking with Voxel Embedding based Deep Learning

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Abstract

Recent advances in bioimaging have provided scientists a superior high spatial-temporal resolution to observe dynamics of living cells as 3D volumetric videos. Unfortunately, the 3D biomedical video analysis is lagging, impeded by resource insensitive human curation using off-the-shelf 3D analytic tools. Herein, biologists often need to discard a considerable amount of rich 3D spatial information by compromising on 2D analysis via maximum intensity projection. Recently, pixel embedding based cell instance segmentation and tracking provided a neat and generalizable computing paradigm for understanding cellular dynamics. In this work, we propose a novel spatial-temporal voxel-embedding (VoxelEmbed) based learning method to perform simultaneous cell instance segmenting and tracking on 3D volumetric video sequences. Our contribution is in four-fold: (1) The proposed voxel embedding generalizes the pixel embedding with 3D context information; (2) Present a simple multi-stream learning approach that allows effective spatial-temporal embedding; (3) Accomplished an end-to-end framework for one-stage 3D cell instance segmentation and tracking without heavy parameter tuning; (4) The proposed 3D quantification is memory efficient via a single GPU with 12 GB memory. We evaluate our VoxelEmbed method on four 3D datasets (with different cell types) from the ISBI Cell Tracking Challenge. The proposed VoxelEmbed method achieved consistent superior overall performance (OP) on two densely annotated datasets. The performance is also competitive on two sparsely annotated cohorts with 20.6\(\%\) and 2\(\%\) of data-set having segmentation annotations. The results demonstrate that the VoxelEmbed method is a generalizable and memory-efficient solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Appel, K., Haken, W., et al.: Every planar map is four colorable. Bull. Am. Math. Soc. 82(5), 711–712 (1976)

    Article  MathSciNet  Google Scholar 

  2. Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional networks for learning video representations. arXiv preprint arXiv:1511.06432 (2015)

  3. Cai, J., et al.: Accurate weakly-supervised deep lesion segmentation using large-scale clinical annotations: slice-propagated 3D mask generation from 2D RECIST. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 396–404. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_46

    Chapter  Google Scholar 

  4. Cao, M., et al.: The single-cell transcriptional landscape of mammalian organogenesis. Nature 566(7745), 496–502 (2019)

    Article  Google Scholar 

  5. von Chamier, L., Laine, R.F., Henriques, R.: Artificial intelligence for microscopy: what you should know. Biochem. Soc. Trans. 47(4), 1029–1040 (2019)

    Article  Google Scholar 

  6. Chen, B.C., et al.: Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346(6208), 1257998 (2014)

    Article  Google Scholar 

  7. Condeelis, J., Pollard, J.W.: Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2), 263–266 (2006)

    Article  Google Scholar 

  8. Debeir, O., Van Ham, P., Kiss, R., Decaestecker, C.: Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes. IEEE Trans. Med. imaging 24(6), 697–711 (2005)

    Article  Google Scholar 

  9. Meijering, E., Dzyubachyk, O., Smal, I.: Methods for cell and particle tracking. Methods Enzym. 504, 183–200 (2012)

    Google Scholar 

  10. ISBI: Isbi cell tracking challenge benchmark leader boarder (2021). http://celltrackingchallenge.net/latest-ctb-results/

  11. Jiang, C., Tsai, Y.J.: Enhanced crack segmentation algorithm using 3D pavement data. J. Comput. Civil Eng. 30(3), 04015050 (2016)

    Article  Google Scholar 

  12. Jiang, R., Gouvea, J., Hammer, D., Aeron, S.: Automatic coding of students’ writing via contrastive representation learning in the wasserstein space. arXiv preprint arXiv:2011.13384 (2020)

  13. Jin, B., Cruz, L., Goncalves, N.: Deep facial diagnosis: deep transfer learning from face recognition to facial diagnosis. IEEE Access 8, 123649–123661 (2020)

    Article  Google Scholar 

  14. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.: The similarity metric. IEEE Trans. Inform. Theory 50(12), 3250–3264 (2004)

    Article  MathSciNet  Google Scholar 

  15. Liu, Q., et al.: Towards annotation-free instance segmentation and tracking with adversarial simulations. arXiv preprint arXiv:2101.00567 (2021)

  16. Liu, T.L., et al.: Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360(6386), eaaq1392 (2018)

    Google Scholar 

  17. Magnusson, K.E.: Segmentation and tracking of cells and particles in time-lapse microscopy. Ph.D. thesis, KTH Royal Institute of Technology (2016)

    Google Scholar 

  18. Matula, P., Maška, M., Sorokin, D.V., Matula, P., Ortiz-de Solórzano, C., Kozubek, M.: Cell tracking accuracy measurement based on comparison of acyclic oriented graphs. PloS ONE 10(12), e0144959 (2015)

    Google Scholar 

  19. Meijering, E.: A bird’s-eye view of deep learning in bioimage analysis. Comput. Struct. Biotech. J. 18, 2312 (2020)

    Article  Google Scholar 

  20. Microsoft: Azure NC-series (2020). https://docs.microsoft.com/en-us/azure/virtual-machines/nc-series

  21. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation, pp. 483–499 (2016)

    Google Scholar 

  22. Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S.: Using of Jaccard coefficient for keywords similarity. In: Proceedings of the International Multiconference of Engineers and Computer Scientists, vol. 1, pp. 380–384 (2013)

    Google Scholar 

  23. NVIDIA: Nvidia, V. (2013). tesla k20 gpu accelerator board specification (2015). https://www.nvidia.com/content/PDF/kepler/tesla-k20-active-bd-06499-001-v03.pdf

  24. Ong, E.Z., et al.: A dynamic immune response shapes Covid-19 progression. Cell Host Microbe 27(6), 879–882 (2020)

    Article  Google Scholar 

  25. Payer, C., Štern, D., Feiner, M., Bischof, H., Urschler, M.: Segmenting and tracking cell instances with cosine embeddings and recurrent hourglass networks. Med. Image Anal. 57, 106–119 (2019)

    Article  Google Scholar 

  26. Ulman, V., et al.: An objective comparison of cell-tracking algorithms. Nat. Methods 14(12), 1141–1152 (2017)

    Article  Google Scholar 

  27. Wan, Y., McDole, K., Keller, P.J.: Light-sheet microscopy and its potential for understanding developmental processes. Annu. Rev. Cell Dev. Biol. 35, 655–681 (2019)

    Article  Google Scholar 

  28. Yuan, W., Xu, W.: Neighborloss: a loss function considering spatial correlation for semantic segmentation of remote sensing image. IEEE Access 9, 75641–75649 (2021)

    Article  Google Scholar 

  29. Zhao, M., Chang, C.H., Xie, W., Xie, Z., Hu, J.: Cloud shape classification system based on multi-channel CNN and improved FDM. IEEE Access 8, 44111–44124 (2020)

    Article  Google Scholar 

  30. Zhao, M., et al.: Faster mean-shift: GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking. Med. Image Anal. 71, 102048 (2021)

    Article  Google Scholar 

  31. Zhou, X., Wong, S.T.: High content cellular imaging for drug development. IEEE Signal Process. Mag. 23(2), 170–174 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuankai Huo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, M. et al. (2021). VoxelEmbed: 3D Instance Segmentation and Tracking with Voxel Embedding based Deep Learning. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics