Structure Adaptive Filtering for Edge-Preserving Image Smoothing | SpringerLink
Skip to main content

Structure Adaptive Filtering for Edge-Preserving Image Smoothing

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12890))

Included in the following conference series:

  • 2655 Accesses

Abstract

In this paper, we propose a new edge-preserving image smoothing technique. A simple and effective scheme that classifies a pixel as situating on a corner, an edge or a plane has been developed. For the central pixel to be processed, nine adjacent support regions are constructed, leading to nine dimensional variation. Then the selected support region is adaptively determined by the coefficient of variation and variance, and finally the center pixel is updated iteratively according to the selected support region. More specifically, we show that a pixel at a location with very small variation is very likely situating on a plane (a smooth region). Otherwise, When the coefficient of variation is larger than the mean, then it is likely an edge pixel, otherwise it is a corner pixel. We adaptively select the appropriate filtering windows based on the local image structures to achieve excellent edge-preserving image smoothing. We present experimental results to show the effectiveness of our new technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubry, M., Paris, S., Hasinoff, S.W., Kautz, J., Durand, F.: Fast local laplacian filters: theory and applications. ACM Trans. Graph. (TOG) 33(5), 1–14 (2014)

    Article  Google Scholar 

  2. Everitt, B., Skrondal, A.: The Cambridge Dictionary of Statistics, vol. 106. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  3. Gong, Y., Goksel, O.: Weighted mean curvature. Signal Process. 164, 329–339 (2019)

    Article  Google Scholar 

  4. Gong, Y., Sbalzarini, I.F.: Curvature filters efficiently reduce certain variational energies. IEEE Trans. Image Process. 26(4), 1786–1798 (2017)

    Article  MathSciNet  Google Scholar 

  5. Gudkov, V., Moiseev, I.: Image smoothing algorithm based on gradient analysis. In: 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), pp. 403–406. IEEE (2020)

    Google Scholar 

  6. Haddad, R.A., Akansu, A.N., et al.: A class of fast gaussian binomial filters for speech and image processing. IEEE Trans. Signal Process. 39(3), 723–727 (1991)

    Article  Google Scholar 

  7. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_1

    Chapter  Google Scholar 

  8. Huang, T., Yang, G., Tang, G.: A fast two-dimensional median filtering algorithm. IEEE Trans. Acoustics Speech Signal Process. 27(1), 13–18 (1979)

    Article  Google Scholar 

  9. Kuwahara, M., Hachimura, K., Eiho, S., Kinoshita, M.: Processing of ri-angiocardiographic images. In: Preston, K., Onoe, M. (eds.) Digital Processing of Biomedical Images, pp. 187–202. Springer, Boston (1976). https://doi.org/10.1007/978-1-4684-0769-3_13

  10. Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N.: Fast global image smoothing based on weighted least squares. IEEE Trans. Image Process. 23(12), 5638–5653 (2014)

    Article  MathSciNet  Google Scholar 

  11. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  12. Sara, U., Akter, M., Uddin, M.S.: Image quality assessment through fsim, ssim, mse and psnr-a comparative study. J. Comput. Commun. 7(3), 8–18 (2019)

    Article  Google Scholar 

  13. Singh, D., Kumar, V.: Dehazing of outdoor images using notch based integral guided filter. Multimed. Tools Appl. 77(20), 27363–27386 (2018)

    Article  Google Scholar 

  14. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 839–846. IEEE (1998)

    Google Scholar 

  15. Van Herk, M.: A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels. Pattern Recogn. Lett. 13(7), 517–521 (1992)

    Article  Google Scholar 

  16. Yin, H., Gong, Y., Qiu, G.: Side window filtering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8758–8766 (2019)

    Google Scholar 

  17. Zhang, P., Li, F.: A new adaptive weighted mean filter for removing salt-and-pepper noise. IEEE Signal Process. Lett. 21(10), 1280–1283 (2014)

    Article  Google Scholar 

  18. Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 815–830. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_53

    Chapter  Google Scholar 

  19. Zhang, X., Xiong, Y.: Impulse noise removal using directional difference based noise detector and adaptive weighted mean filter. IEEE Signal Process. Lett. 16(4), 295–298 (2009)

    Article  Google Scholar 

  20. Zhou, Z., Wang, B., Ma, J.: Scale-aware edge-preserving image filtering via iterative global optimization. IEEE Trans. Multimed. 20(6), 1392–1405 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Education Department of Guangdong Province, PR China, under project No 2019KZDZX1028, the National Natural Science Foundation of China under Grant 61907031, the University Stability Support Program of Shenzhen under Grant 20200810150732001, and the National Natural Science Foundation of China under Grant 62006158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, W., Gong, Y., Su, L., Wu, W., Qiu, G. (2021). Structure Adaptive Filtering for Edge-Preserving Image Smoothing. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12890. Springer, Cham. https://doi.org/10.1007/978-3-030-87361-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87361-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87360-8

  • Online ISBN: 978-3-030-87361-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics