Abstract
The paper describes the extended and improved version of the Petri Net System (PNeS) compared to the version published in 2017. PNeS is an integrated graphical computer tool for building, modifying, analyzing Petri nets, as well as controlling a mobile robot. It runs on any computer under any operating system. PNeS can be useful for researchers, educators and practitioners, from both academia and industry, who are actively involved in the work of modelling and analyzing concurrent systems, and for those who have the potential to be involved in these areas.
This work was partially supported by the Center for Innovation and Transfer of Natural Sciences and Engineering Knowledge at Rzeszów University.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2_13
Best, E.: Structure theory of petri nets: the free choice hiatus. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 168–205. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2_8
Bruno, J., Altman, S.M.: A theory of asynchronous control networks, IEEE Trans. Comput. C-20, 629–638 (1971)
Chen, S.M., Ke, J.S., Chang, J.F.: Knowledge representation using fuzzy Petri nets. IEEE Trans. Knowl. Data Eng. 2(3), 311–319 (1990)
David, R., Alla, H.: Petri Nets and Grafcet: Tools for Modelling Discrete Event Systems. Prentice Hall, New York (1992)
Desel, J., Reisig, W., Rozenberg, G.: Lectures on Concurrency and Petri Nets. Springer, Berlin (2004). https://doi.org/10.1007/b98282
DiCesare, F., Harhalakis, G., Proth, J.M., Silva, M., Vernadat, F.B.: Practice of Petri nets in Manufacturing. Chapman and Hall, New York (1993)
Feldbrugge, F., Jensen, K.: Computer tools for high-level petri nets. In: High-level Petri Nets, pp. 691–717. Theory and Application, Springer, Berlin (1991)
Grahlmann, B., Best, E.: PEP - more than a petri net tool. In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 397–401. Springer, Berlin (1996)
Hack, M.: Decidability Questions for Petri Nets. Ph.D. Dissertation, Department of Electrical Engineering, MIT, Cambridge (1975)
Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy - a unifying petri net tool. In: Application and Theory of Petri Nets, pp. 398–407. Springer, Berlin (2012)
Jeng, M.D., DiCesare, F.: A review of synthesis techniques for Petri nets with applications to automated manufacturing systems. IEEE Trans. Syst., Man, Cybern. 23(1), 301–312 (1993)
Jensen, K., Rozenberg, G. (eds.): High-level Petri Nets. Theory and Application, Springer, Berlin (1991)
Jie, T.W., Ameedeen, M.A.: A survey of petri net tools. In: Advanced Computer and Communication Engineering Technology, Lecture Notes in Elect. Eng., vol. 315, pp. 537-551 (2015)
Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3, 147–195 (1969)
Kindler, E., Nillies, F.: Petri Nets and the Real World, Semantic Scholar, Corpus ID: 1119127 (2006)
Kounev, S., Dutz, C.: QPME: a performance modeling tool based on queueing Petri Nets. ACM SIGMETRICS Perform. Eval. Rev. 36(4), 46–51 (2009)
Looney, C.G.: Fuzzy petri nets for rule-based decision-making. IEEE Trans. Syst. Man, Cybern. 18–1, 178–183 (1988)
Memmi, G., Vautherin, J.: Analysing nets by the invariant method. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 300–336. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2_11
Meyer, R., Strazny, T.: Petruchio: from dynamic networks to nets. In: Computer Aided Verification, pp. 175–179. Springer, Berlin (2010)
Murata, T.: Petri nets: properties, analysis and applications. Proc. of the IEEE 77(4), 541–580 (1989)
Øhrn, A., Komorowski, J., Skowron, A., Synak, P.: The Rosetta software system. In: Rough Sets in Knowledge Discovery 2, pp. 572–576. Applications, Studies in Fuzziness and Soft Computing, Springer, Berlin (1998)
Pancerz, K., Suraj, Z.: Discovering concurrent models from data tables with the ROSECON system. Fundam. Informat. 60(1–4), 251–268 (2004)
Pawlak, Z.: Rough sets. Int. J. Comput. & Informat. Sci. 11, 341–356 (1982)
Pedrycz, W., Gomide, F.: A generalized fuzzy Petri net model. IEEE Trans. on Fuzzy Systems 2–4, 295–301 (1994)
Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall Inc, Englewood Cliffs, N.J. (1981)
Petri, C.A.: Kommunikation mit Automaten. Bonn: Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 3, 1962 (1966)
Reisig, W.: Petri Nets. Springer Publ, Company (1985). https://doi.org/10.1007/978-0-387-09766-4_134
Starke, P.H.: On the mutual simulatability of different types of Petri nets. In: Voss, K., Genrich, H.J., Rozenber, G. (eds.) Concurrency and Nets, Springer, Berlin, Heidelberg, pp. 481–495 (1987). https://doi.org/10.1007/978-3-642-72822-8_30
Suraj, Z.: PN-tools: environment for the design and analysis of Petri Nets. Control. Cybern. 24(2), 199–222 (1995)
Suraj, Z.: A new class of fuzzy Petri nets for knowledge representation and reasoning. Fundam. Informat. 128(1–2), 193–207 (2013)
Suraj, Z., Bandyopadhyay, S.: Generalized weighted fuzzy petri net in intuitionistic fuzzy environment. In: Proceedings of the IEEE World Congress on Computational Intelligence, 25–29 July, 2016, Vancouver, Canada, pp. 2385–2392 (2016)
Suraj, Z., Grochowalski, P.: Petri Nets and PNeS in Modeling and Analysis of Concurrent Systems, pp. 1–12. Proc. CS&P, Warsaw, Poland (2017)
Suraj, Z., Hassanien, A.E., Bandyopadhyay, S.: Weighted generalized fuzzy petri nets and rough sets for knowledge representation and reasoning. In: Bello, R., Miao, D., Falcon, R., Nakata, M., Rosete, A., Ciucci, D. (eds.) IJCRS 2020. LNCS (LNAI), vol. 12179, pp. 61–77. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52705-1_5
Suraj, Z., Olar, O., Bloshko, Y.: Modeling of passenger transport logistics based on intelligent computational techniques. Int. J. Comput. Intell. Syst. (accepted) (2021)
The Petri Net Markup Language (2017). http://www.pnml.org
The Petri Nets World (2017). http://www.informatik.uni-hamburg.de/TGI/PetriNets
Valette, R.: Analysis of Petri nets by stepwise refinements. J. Comput. Syst. Sci. 18(1), 35–46 (1978)
Valk, R.: Self-modifying nets: a natural extension of Petri Nets, Lecture Notes in Comput. Sci., vol. 62, Springer, Berlin, pp. 464–476 (1978). https://doi.org/10.1007/3-540-08860-1_35
Wegener, J., Schwarick, M., Heiner, M.: A plugin system for charlie. In: Proceedings of the CS&P, pp. 531–554 (2011)
Popova-Zeugmann, L.: Time petri nets. In: Time and Petri Nets, pp. 31–137. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41115-1_3
Zurawski, R., MengChu, Z.: Petri nets and industrial applications: a tutorial. IEEE Trans. Ind. Electr. 41(6), 567–583 (1994)
Acknowledgment
We thank the anonymous reviewers for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Suraj, Z., Grochowalski, P. (2021). PNeS in Modelling, Control and Analysis of Concurrent Systems. In: Ramanna, S., Cornelis, C., Ciucci, D. (eds) Rough Sets. IJCRS 2021. Lecture Notes in Computer Science(), vol 12872. Springer, Cham. https://doi.org/10.1007/978-3-030-87334-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-87334-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87333-2
Online ISBN: 978-3-030-87334-9
eBook Packages: Computer ScienceComputer Science (R0)