Image-Based Incision Detection for Topological Intraoperative 3D Model Update in Augmented Reality Assisted Laparoscopic Surgery | SpringerLink
Skip to main content

Image-Based Incision Detection for Topological Intraoperative 3D Model Update in Augmented Reality Assisted Laparoscopic Surgery

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Augmented Reality (AR) is a promising way to precisely locate the internal structures of an organ in laparoscopy. Several methods have been proposed to register a preoperative 3D model reconstructed from MRI or CT to the intraoperative laparoscopy 2D images. These methods assume a fixed topology of the 3D model. They thus quickly fail once the organ is cut to remove pathological internal structures. We propose to add image-based incision detection in the registration pipeline, in order to update the topology of the organ model. Whenever an incision is detected, it is transferred to the 3D model, whose topology is then updated accordingly, and registration started. We trained a UNet as incision detector from 181 labelled incision images, collected from 10 myomectomy procedures. It obtains a mean precision, recall and f1 score of 0.05, 0.36, and 0.08 from 10-fold cross-validation. Overall, topology updating improves 3D registration accuracy by 5% on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Griwodz, C., et al.: Alicevision meshroom: an open-source 3D reconstruction pipeline. In: Proceedings of the 12th ACM Multimedia Systems Conference - MMSys 2021. ACM Press (2021). https://doi.org/10.1145/3458305.3478443

  2. Photoscan (2015). https://www.agisoft.com

  3. Adagolodjo, Y., Trivisonne, R., Haouchine, N., Cotin, S., Courtecuisse, H.: Silhouette-based pose estimation for deformable organs application to surgical augmented reality. In: IROS, pp. 539–544. IEEE (2017)

    Google Scholar 

  4. Amir-Khalili, A., Nosrati, M.S., Peyrat, J.-M., Hamarneh, G., Abugharbieh, R.: Uncertainty-encoded augmented reality for robot-assisted partial nephrectomy: a phantom study. In: Liao, H., Linte, C.A., Masamune, K., Peters, T.M., Zheng, G. (eds.) AE-CAI/MIAR -2013. LNCS, vol. 8090, pp. 182–191. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40843-4_20

    Chapter  Google Scholar 

  5. Bartoli, A.: Maximizing the predictivity of smooth deformable image warps through cross-validation. JMIV 31(2–3), 133–145 (2008). https://doi.org/10.1007/s10851-007-0062-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Collins, T., et al.: A system for augmented reality guided laparoscopic tumour resection with quantitative ex-vivo user evaluation. In: Peters, T., et al. (eds.) CARE 2016. LNCS, vol. 10170, pp. 114–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54057-3_11

    Chapter  Google Scholar 

  7. Collins, T., et al.: Augmented reality guided laparoscopic surgery of the uterus. IEEE Trans. Med. Imaging 40(1), 371–380 (2020)

    Article  MathSciNet  Google Scholar 

  8. François, T., et al.: Detecting the occluding contours of the uterus to automatise augmented laparoscopy: score, loss, dataset, evaluation and user study. Int. J. Comput. Assist. Radiol. Surg. 15(7), 1177–1186 (2020). https://doi.org/10.1007/s11548-020-02151-w

    Article  Google Scholar 

  9. Garcia-Peraza-Herrera, L.C., et al.: ToolNet: holistically-nested real-time segmentation of robotic surgical tools. In: IROS, pp. 5717–5722. IEEE (2017)

    Google Scholar 

  10. Gay-Bellile, V., Bartoli, A., Sayd, P.: Direct estimation of nonrigid registrations with image-based self-occlusion reasoning. TPAMI 32(1), 87–104 (2008)

    Article  Google Scholar 

  11. Han, L., Wang, H., Liu, Z., Chen, W., Zhang, X.: Vision-based cutting control of deformable objects with surface tracking. IEEE/ASME Transactions on Mechatronics (2020)

    Google Scholar 

  12. Haouchine, N., Dequidt, J., Berger, M.O., Cotin, S.: Monocular 3D reconstruction and augmentation of elastic surfaces with self-occlusion handling. IEEE Trans. Vis. Comput. Graph. 21(12), 1363–1376 (2015)

    Article  Google Scholar 

  13. Haouchine, N., Dequidt, J., Peterlik, I., Kerrien, E., Berger, M.O., Cotin, S.: Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery. In: ISMAR, pp. 199–208. IEEE (2013)

    Google Scholar 

  14. Hattab, G., et al.: Kidney edge detection in laparoscopic image data for computer-assisted surgery. Int. J. Comput. Assist. Radiol. Surg. 15(3), 379–387 (2019). https://doi.org/10.1007/s11548-019-02102-0

    Article  Google Scholar 

  15. Litjens, G.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  16. Paulus, C.J., Haouchine, N., Kong, S.-H., Soares, R.V., Cazier, D., Cotin, S.: Handling topological changes during elastic registration. Int. J. Comput. Assist. Radiol. Surg. 12(3), 461–470 (2016). https://doi.org/10.1007/s11548-016-1502-4

    Article  Google Scholar 

  17. Pizarro, D., Bartoli, A.: Feature-based deformable surface detection with self-occlusion reasoning. IJCV 97(1), 54–70 (2012). https://doi.org/10.1007/s11263-011-0452-0

    Article  MATH  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  20. Wu, J., Westermann, R., Dick, C.: A survey of physically based simulation of cuts in deformable bodies. Comput. Graph. Forum 34(6), 161–187 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom François .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

François, T., Calvet, L., Sève-d’Erceville, C., Bourdel, N., Bartoli, A. (2021). Image-Based Incision Detection for Topological Intraoperative 3D Model Update in Augmented Reality Assisted Laparoscopic Surgery. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics