The Pathology of Failures in IoT Systems | SpringerLink
Skip to main content

The Pathology of Failures in IoT Systems

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12957))

Included in the following conference series:

Abstract

The presence of faults is inevitable in the Internet of Things (IoT) systems. Dependability in these systems is challenging due to the increasing level of dynamicity, heterogeneity, and complexity. IoT connects anything, anytime, and everywhere, introducing a complex relationship of interdependence, generating an increase in the susceptibility of the propagation of failures. The purpose of this study is to propose a pathology of failure in IoT Systems, exploring and characterizing faults, errors, failures, and their effects. This study investigates and classifies the source of faults, defines a taxonomy of the types of faults prone to happen, and defines the failure propagation model. As a result, the pathology establishes a common reference for fault, errors, and failures to be used by researchers and practitioners to improve tools for fault detection, fault diagnosis, fault tolerance, and fault handling in IoT Systems. This paper also proposes a failure propagation model for IoT systems that identify different combinations, paths, and fault-failure propagation effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, A., Tixeuil, S.: Advanced faults patterns for WSN dependability benchmarking. In: Proceedings of the 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, pp. 39–48. ACM (2010)

    Google Scholar 

  2. Alrajei, N., Fu, H., Zhu, Y.: A survey on fault tolerance in wireless sensor networks. In: 2014 American Society For Engineering Education North Central Section Conference ASEE NCS Conference April, vol. 4 (2014)

    Google Scholar 

  3. Andrade, R.M.C., Carvalho, R.M., de Araújo, I.L., Oliveira, K.M., Maia, M.E.F.: What changes from ubiquitous computing to internet of things in interaction evaluation? In: Streitz, N., Markopoulos, P. (eds.) DAPI 2017. LNCS, vol. 10291, pp. 3–21. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58697-7_1

    Chapter  Google Scholar 

  4. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur. Comput. 1(1), 11–33 (2004)

    Article  Google Scholar 

  5. Bernardi, S., Donatelli, S., Dondossola, G.: Towards a methodological approach to specification and analysis of dependable automation systems. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 36–51. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_5

    Chapter  MATH  Google Scholar 

  6. Chetan, S., Ranganathan, A., Campbell, R.: Towards fault tolerance pervasive computing. IEEE Technol. Soc. Mag. 24(1), 38–44 (2005). https://doi.org/10.1109/MTAS.2005.1407746

    Article  Google Scholar 

  7. Ciccozzi, F., Crnkovic, I., Di Ruscio, D., Malavolta, I., Pelliccione, P., Spalazzese, R.: Model-driven engineering for mission-critical iot systems. IEEE Softw. 34(1), 46–53 (2017)

    Article  Google Scholar 

  8. Cristian, F.: Understanding fault-tolerant distributed systems. Commun. ACM 34(2), 56–79 (1991)

    Article  Google Scholar 

  9. Dar, K.S., Taherkordi, A., Eliassen, F.: Enhancing dependability of cloud-based IoT services through virtualization. In: 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 106–116. IEEE (2016)

    Google Scholar 

  10. De Souza, L.M.S., Vogt, H., Beigl, M.: A survey on fault tolerance in wireless sensor networks. Interner Bericht. Fakultät für Informatik, Universität Karlsruhe (2007)

    Google Scholar 

  11. Denker, G., Dutt, N., Mehrotra, S., Stehr, M.-O., Talcott, C., Venkatasubramanian, N.: Resilient dependable cyber-physical systems: a middleware perspective. J. Internet Serv. Appl. 3(1), 41–49 (2012). https://doi.org/10.1007/s13174-011-0057-4

    Article  Google Scholar 

  12. Ganesh, A., Sandhya, M., Shankar, S.: A study on fault tolerance methods in cloud computing. In: 2014 IEEE International Advance Computing Conference (IACC), pp. 844–849. IEEE (2014)

    Google Scholar 

  13. Gia, T.N., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Fault tolerant and scalable IoT-based architecture for health monitoring. In: 2015 IEEE Sensors Applications Symposium (SAS), pp. 1–6. IEEE (2015)

    Google Scholar 

  14. Huangshui, H., Guihe, Q.: Fault management frameworks in wireless sensor networks. In: 2011 Fourth International Conference on Intelligent Computation Technology and Automation, vol. 2, pp. 1093–1096. IEEE (2011)

    Google Scholar 

  15. Iwanicki, K.: A distributed systems perspective on industrial IoT. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 1164–1170 (2018). https://doi.org/10.1109/ICDCS.2018.00116

  16. Khan, F.I., Hameed, S.: Understanding security requirements and challenges in internet of things (IoTs): A review. arXiv preprint arXiv:1808.10529 (2018)

  17. Khan, M.Z., Merabti, M., Askwith, B.: Design considerations for fault management in wireless sensor networks. In: 10th Annual Conference on the Convergence of Telecommunications, Networking and Broadcasting, Liverpool, UK (2009)

    Google Scholar 

  18. Kubler, S., Främling, K., Buda, A.: A standardized approach to deal with firewall and mobility policies in the iot. Pervasive Mob. Comput. 20, 100–114 (2015)

    Article  Google Scholar 

  19. Li, X., Ji, H., Li, Y.: Layered fault management scheme for end-to-end transmission in internet of things. Mob. Netw. Appl. 18(2), 195–205 (2013)

    Article  Google Scholar 

  20. Ma, R., Xing, L., Michel, H.E.: Fault-intrusion tolerant techniques in wireless sensor networks. In: 2006 2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing, pp. 85–94. IEEE (2006)

    Google Scholar 

  21. Mahapatro, A., Khilar, P.M.: Fault diagnosis in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(4), 2000–2026 (2013)

    Article  Google Scholar 

  22. Misra, S., Gupta, A., Krishna, P.V., Agarwal, H., Obaidat, M.S.: An adaptive learning approach for fault-tolerant routing in internet of things. In: 2012 IEEE Wireless Communications and Networking Conference (WCNC), pp. 815–819. IEEE (2012)

    Google Scholar 

  23. Moridi, E., Haghparast, M., Hosseinzadeh, M., Jassbi, S.J.: Fault management frameworks in wireless sensor networks: a survey. Comput. Commun. 155(March), 205–226 (2020). https://doi.org/10.1016/j.comcom.2020.03.011

  24. Muhammed, T., Shaikh, R.A.: An analysis of fault detection strategies in wireless sensor networks. J. Netw. Comput. Appl. 78, 267–287 (2017). https://doi.org/10.1016/j.jnca.2016.10.019. (November 2016)

  25. Mukwevho, M.A., Celik, T.: Toward a smart cloud: a review of fault-tolerance methods in cloud systems. IEEE Trans. Serv. Comput. 14(2), 589–605 (2018)

    Google Scholar 

  26. Ojie, E., Pereira, E.: Exploring dependability issues in IoT applications. In: Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, p. 123. ACM (2017)

    Google Scholar 

  27. Paradis, L., Han, Q.: A survey of fault management in wireless sensor networks. J. Netw. Syst. Manag. 15(2), 171–190 (2007)

    Article  Google Scholar 

  28. Power, A., Kotonya, G.: Complex patterns of failure: fault tolerance via complex event processing for IoT systems. In: Proceedings - 2019 IEEE International Congress on Cybermatics: 12th IEEE International Conference on Internet of Things, 15th IEEE International Conference on Green Computing and Communications, 12th IEEE International Conference on Cyber, Physical and So, pp. 986–993 (2019). https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00173

  29. Raposo, D., Rodrigues, A., Silva, J.S., Boavida, F.: A taxonomy of faults for wireless sensor networks. J. Netw. Syst. Manag. 25(3), 591–611 (2017)

    Article  Google Scholar 

  30. Ratasich, D., Khalid, F., Geißler, F., Grosu, R., Shafique, M., Bartocci, E.: A roadmap toward the resilient internet of things for cyber-physical systems. IEEE Access 7, 13260–13283 (2019). https://doi.org/10.1109/ACCESS.2019.2891969

  31. Schmid, T., Dubois-Ferriere, H., Vetterli, M.: Sensorscope: experiences with a wireless building monitoring sensor network. In: Workshop on Real-World Wireless Sensor Networks (REALWSN 2005). No. CONF (2005)

    Google Scholar 

  32. Ştefan, V.K., Otto, P., Alexandrina, P.M.: Considerations regarding the dependability of internet of things. In: 2017 14th International Conference on Engineering of Modern Electric Systems (EMES), pp. 145–148. IEEE (2017)

    Google Scholar 

  33. Suo, H., Wan, J., Zou, C., Liu, J.: Security in the internet of things: a review. In: 2012 International Conference on Computer Science and Electronics Engineering, vol. 3, pp. 648–651. IEEE (2012)

    Google Scholar 

  34. Szewczyk, R., Polastre, J., Mainwaring, A., Culler, D.: Lessons from a sensor network expedition. In: Karl, H., Wolisz, A., Willig, A. (eds.) EWSN 2004. LNCS, vol. 2920, pp. 307–322. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24606-0_21

    Chapter  Google Scholar 

  35. Tolle, G., et al.: A macroscope in the redwoods. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, pp. 51–63. ACM (2005)

    Google Scholar 

  36. Warriach, E.U., Aiello, M., Tei, K.: A machine learning approach for identifying and classifying faults in wireless sensor network. In: 2012 IEEE 15th International Conference on Computational Science and Engineering, pp. 618–625. IEEE (2012)

    Google Scholar 

  37. Xing, L., Li, H., Michel, H.E.: Fault-tolerance and reliability analysis for wireless sensor networks. Int. J. Perform. Eng. 5(5), 419–431 (2009)

    Google Scholar 

  38. Xing, L., Zhao, G., Wang, Y., Mandava, L.: Competing failure analysis in iot systems with cascading functional dependence. In: 2018 Annual Reliability and Maintainability Symposium (RAMS), pp. 1–6. IEEE (2018)

    Google Scholar 

  39. Yaqoob, I., et al.: Internet of things architecture: recent advances, taxonomy, requirements, and open challenges. IEEE Wirel. Commun. 24(3), 10–16 (2017)

    Article  Google Scholar 

  40. Zhang, Z., Mehmood, A., Shu, L., Huo, Z., Zhang, Y., Mukherjee, M.: A survey on fault diagnosis in wireless sensor networks. IEEE Access 6, 11349–11364 (2018). https://doi.org/10.1109/ACCESS.2018.2794519

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário Melo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Melo, M., Aquino, G. (2021). The Pathology of Failures in IoT Systems. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12957. Springer, Cham. https://doi.org/10.1007/978-3-030-87013-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87013-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87012-6

  • Online ISBN: 978-3-030-87013-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics