Abstract
The presence of faults is inevitable in the Internet of Things (IoT) systems. However, fault Tolerance in IoT systems is a challenge to overcome due to their size, complexity, dynamicity, and level of heterogeneity, especially error detection and error recovery and continued service. Thus, it is impractical to consider a unified fault tolerance technique for an entire system. The purpose of this study is to propose a multi-level fault tolerance approach granting interconnection among IoT system levels allowing information exchange and collaboration in order to attain the dependability property. Therefore, we define an event-driven framework called FaTEMa (Fault Tolerance Event Manager), creating a dedicated fault-related communication channel to propagate events among system levels. The implemented framework acted to assist error detection and continued service. Also, it offers extension points to support heterogeneous communication protocols and evolves to new capabilities. Our empirical results show that the FaTEMa introduction has improved error detection and error resolution time, consequently improving system availability. In addition, the use of FaTEMa demonstrates a reliability improvement and a reduction in the number of failures produced.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)
Celesti, A., Carnevale, L., Galletta, A., Fazio, M., Villari, M.: A watchdog service making container-based micro-services reliable in IoT clouds. In: 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 372–378. IEEE (2017)
Choi, J., Jeoung, H., Kim, J., Ko, Y., Jung, W., Kim, H., Kim, J.: Detecting and identifying faulty IoT devices in smart home with context extraction. In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 610–621. IEEE (2018)
Ciccozzi, F., Crnkovic, I., Di Ruscio, D., Malavolta, I., Pelliccione, P., Spalazzese, R.: Model-driven engineering for mission-critical IoT systems. IEEE Softw. 34(1), 46–53 (2017)
Gia, T.N., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Fault tolerant and scalable IoT-based architecture for health monitoring. In: 2015 IEEE Sensors Applications Symposium (SAS), pp. 1–6. IEEE (2015)
Homer, A., Sharp, J., Brader, L., Narumoto, M., Swanson, T.: Cloud Design Patterns: Prescriptive Architecture Guidance for Cloud Applications. Microsoft Patterns& Practices, CreateSpace, Scotts Valley (2014)
Javed, A., Heljanko, K., Buda, A., Främling, K.: CEFIoT: a fault-tolerant IoT architecture for edge and cloud. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pp. 813–818. IEEE (2018)
Karthikeya, S.A., Vijeth, J., Murthy, C.S.R.: Leveraging solution-specific gateways for cost-effective and fault-tolerant IoT networking. In: 2016 IEEE Wireless Communications and Networking Conference, pp. 1–6. IEEE (2016)
Khan, F.I., Hameed, S.: Understanding security requirements and challenges in Internet of Things (IoTs): a review. arXiv preprint arXiv:1808.10529 (2018)
Kosmatos, E.A., Tselikas, N.D., Boucouvalas, A.C.: Integrating RFIDs and smart objects into a unified internet of things architecture. Adv. Internet Things 1(01), 5 (2011)
Kubler, S., Främling, K., Buda, A.: A standardized approach to deal with firewall and mobility policies in the IoT. Pervasive Mob. Comput. 20, 100–114 (2015)
La Marra, A., Martinelli, F., Mori, P., Saracino, A.: Implementing usage control in internet of things: a smart home use case. In: 2017 IEEE Trustcom/BigDataSE/ICESS, pp. 1056–1063. IEEE (2017)
Lee, P.A., Anderson, T.: Fault tolerance. In: Fault Tolerance. Dependable Computing and Fault-Tolerant Systems, vol. 3, pp. 51–77. Springer, Vienna (1990). https://doi.org/10.1007/978-3-7091-8990-0_3
Li, X., Ji, H., Li, Y.: Layered fault management scheme for end-to-end transmission in internet of things. Mob. Netw. Appl. 18(2), 195–205 (2013)
Lyu, M.R.: Software reliability engineering: a roadmap. In: Future of Software Engineering (FOSE 2007), pp. 153–170. IEEE (2007)
Madakam, S., Ramaswamy, R., Tripathi, S.: Internet of things (IoT): a literature review. J. Comput. Commun. 3(05), 10 (2015)
Miraz, M.H., Ali, M., Excell, P.S., Picking, R.: A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT). In: 2015 Internet Technologies and Applications (ITA), pp. 219–224 (2015). https://doi.org/10.1109/ITechA.2015.7317398
Ojie, E., Pereira, E.: Exploring dependability issues in IoT applications. In: Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, p. 123. ACM (2017)
Ratasich, D., Khalid, F., Geißler, F., Grosu, R., Shafique, M., Bartocci, E.: A roadmap toward the resilient internet of things for cyber-physical systems. IEEE Access 7, 13260–13283 (2019). https://doi.org/10.1109/ACCESS.2019.2891969
Ştefan, V.K., Otto, P., Alexandrina, P.M.: Considerations regarding the dependability of internet of things. In: 2017 14th International Conference on Engineering of Modern Electric Systems (EMES), pp. 145–148. IEEE (2017)
Su, P.H., Shih, C.S., Hsu, J.Y.J., Lin, K.J., Wang, Y.C.: Decentralized fault tolerance mechanism for intelligent IoT/M2M middleware. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 45–50. IEEE (2014)
Woo, M.W., Lee, J., Park, K.: A reliable IoT system for personal healthcare devices. Futur. Gener. Comput. Syst. 78, 626–640 (2018)
Xing, L., Zhao, G., Wang, Y., Mandava, L.: Competing failure analysis in IoT systems with cascading functional dependence. In: 2018 Annual Reliability and Maintainability Symposium (RAMS), pp. 1–6. IEEE (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Melo, M., Aquino, G. (2021). Multi-level Fault Tolerance Approach for IoT Systems. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12957. Springer, Cham. https://doi.org/10.1007/978-3-030-87013-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-87013-3_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87012-6
Online ISBN: 978-3-030-87013-3
eBook Packages: Computer ScienceComputer Science (R0)