Modeling Land Cover Impact on Albedo Changes in Google Earth Engine Environment | SpringerLink
Skip to main content

Modeling Land Cover Impact on Albedo Changes in Google Earth Engine Environment

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Over the last decades, Earth’s surface has suffered an intense urbanisation process that has impacted Land Use/Land Cover (LULC) and Earth’s surface energy balance. Such a rapid and unexpected phenomenon was not carried out in a sustainable way compromising Earth’s existence in the long term. Therefore, the United States identified 17 Sustainable Development Goals (SDGs) to meet within 2030. To make the world more resilient and sustainable and combat climate changes, information concerning LULC conversion trends and land surface albedo is essential. Such variables are directly responsible for the increment and decrement of air and surface temperature and, consequently, to the Urban Heat Island (UHI) phenomenon. The present paper explores Google Earth Engine (GEE) platform potentialities in investigating the relationship between LULC transformation and land surface albedo extracted from medium-resolution satellite data. The present analysis was performed on the study area of Berlin for 8 years, from 2011 to 2019. Two radiometrically and atmospherically corrected Landsat images were gathered from Landsat 5 and Landsat 8 missions, respectively. Once clouds have been masked, SwirTirRed (STRed) and Normalized Difference Bareness (version 1) (NDBaI1) indices were implemented to distinguish LULC types. Subsequently, LULC changes were assessed, and land surface albedo was estimated by programming a proper code. Thus, the relationship among those features was investigated in such areas in the considered period. GEE appears as the optimal solution to meet research goals and to extend the analysis at a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh, A., Purohit, B.M.: Public health impacts of global warming and climate change. Peace Rev. 26, 112–120 (2014)

    Article  Google Scholar 

  2. Al-Ghussain, L.: Global warming: review on driving forces and mitigation. Environ. Prog. Sustain. Energy 38, 13–21 (2019)

    Article  Google Scholar 

  3. Boccia, L., Capolupo, A., Rigillo, M., Russo, V.: Terrace abandonment hazards in a mediterranean cultural landscape. J. Hazard. Toxic Radioact. Waste 24(1), 04019034 (2020)

    Article  Google Scholar 

  4. Lama, G.F.C., Chirico, G.B.: Effects of reed beds management on the hydrodynamic behaviour of vegetated open channels. In: 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), pp. 149–154. IEEE, November (2020)

    Google Scholar 

  5. Capolupo, A., Boccia, L.: Innovative method for linking anthropisation process to vulnerability. World Rev. Sci. Technol. Sustain. Dev. 17(1), 4–22 (2021)

    Article  Google Scholar 

  6. Errico, A., Lama, G.F.C., Francalanci, S., Chirico, G.B., Solari, L., Preti, F.: Flow dynamics and turbulence patterns in a drainage channel colonized by common reed (Phragmites australis) under different scenarios of vegetation management. Ecol. Eng. 133, 39–52 (2019). https://doi.org/10.1016/j.ecoleng.2019.04.016

    Article  Google Scholar 

  7. Apollonio, C., Balacco, G., Novelli, A., Tarantino, E., Piccinni, A.F.: Land use change impact on flooding areas: the case study of Cervaro Basin (Italy). Sustainability 8(10), 996 (2016)

    Article  Google Scholar 

  8. Lama, G.F.C., Crimaldi, M., Pasquino, V., Padulano, R., Chirico, G.B.: Bulk drag predictions of riparian arundo donax stands through UAV-acquired multispectral images. Water 13(10), 1333 (2021). https://doi.org/10.3390/w13101333

    Article  Google Scholar 

  9. Stathopoulou, E., Mihalakakou, G., Santamouris, M., Bagiorgas, H.S.: On the impact of temperature on tropospheric ozone concentration levels in urban environments. J. Earth Syst. Sci. 117(3), 227–236 (2008)

    Article  Google Scholar 

  10. Santamouris, M.: Urban reality – solar design and refurbishment in the built environment. United Kingdom (2001)

    Google Scholar 

  11. Voogt, J.A., Oke, T.R.: Thermal remote sensing of urban climates. Remote Sens. Environ. 86, 370–384 (2003)

    Article  Google Scholar 

  12. Souch, C., Grimmond, S.: Applied climatology: urban climate. Prog. Phys. Geogr. 30, 270–279 (2006)

    Article  Google Scholar 

  13. Chen, X.L., Zhao, H.M., Li, P.X., Yin, Z.Y.: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 104(2), 133–146 (2006)

    Article  Google Scholar 

  14. Mirzaei, M., Verrelst, J., Arbabi, M., Shaklabadi, Z., Lotfizadeh, M.: Urban heat island monitoring and impacts on citizen’s general health status in Isfahan metropolis: a remote sensing and field survey approach. Remote Sens. 12(8), 1350 (2020)

    Article  Google Scholar 

  15. Patel, N., et al.: Multitemporalsettlement and population mapping from Landsat using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 35(199–208), 2015 (2015)

    Google Scholar 

  16. Susaki, J., Shibasaki, R.: Maximum likelihood method modified in estimating a prior probability and in improving misclassification errors. Int. Arch. Photogramm. Remote Sens. 33, 1499–1504 (2000)

    Google Scholar 

  17. Capolupo, A., Monterisi, C., Caporusso, G., Tarantino, E.: Extracting land cover data using GEE: a review of the classification indices. In: Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., Karaca, Y. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 782–796. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_56

    Chapter  Google Scholar 

  18. Crocetto, N., Tarantino, E.: A class-oriented strategy for features extraction from multidate ASTER imagery. Remote Sens. 1, 1171–1189 (2009)

    Article  Google Scholar 

  19. Sarzana, T., Maltese, A., Capolupo, A., Tarantino, E.: Post-processing of pixel and object-based land cover classifications of very high spatial resolution images. In: Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Ana, M.A., Rocha, C., Tarantino, E., Torre, C.M., Karaca, Y. (eds.) Computational Science and Its Applications – ICCSA 2020: 20th International Conference, Cagliari, Italy, July 1–4, 2020, Proceedings, Part IV, pp. 797–812. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_57

    Chapter  Google Scholar 

  20. Praticò, S., Solano, F., Di Fazio, S., Modica, G.: Machine learning classification of mediterranean forest habitats in Google earth engine based on seasonal sentinel-2 time-series and input image composition optimisation. Remote Sens. 13(4), 586 (2021)

    Article  Google Scholar 

  21. Chen, J., Gong, P., He, C., Pu, R., Shi, P.: Land-use/land-cover change detection using improved change-vector analysis. Photogramm. Eng. Remote Sens. 69, 369–380 (2003)

    Article  Google Scholar 

  22. Whiteside, T.G., Boggs, G.S., Maier, S.W.: Comparing object-based and pixel-based classifications for mapping savannas. Int. J. Appl. Earth Obs. Geoinf. 136, 884–893 (2011)

    Article  Google Scholar 

  23. Li, Z., Garand, L.: Estimation of surface albedo from space: a parameterization for global application. J. Geophys. Res.: Atmos. 99(D4), 8335–8350 (1994)

    Article  Google Scholar 

  24. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)

    Article  Google Scholar 

  25. Kumar, L., Mutanga, O.: Google earth engine applications since inception: usage, trends, and potential. Remote Sens. 10(10), 1509 (2018)

    Article  Google Scholar 

  26. Hansen, M., et al.: Observing the forest and the trees: the first high resolution global maps of forest cover change. Science 342, 850–853 (2013)

    Article  Google Scholar 

  27. Amt für Statistik: Berlin-Brandenburg Statistik Berlin-Brandenburg (2019). http://www.statistik-berlin-brandenburg.de/home.asp. Accessed 10 May 2019

  28. Senatsverwaltung für Stadtentwicklung und Umwelt Berlin Stadtentwicklungsplan Wohnen 2025, Berlin, p. 119 (2014). http://www.stadtentwicklung.berlin.de/planen/stadtentwicklungsplanung/de/wohnen/download/step_wohnen_2025_bericht.pdf

  29. Capolupo, A., Monterisi, C., Saponaro, M., Tarantino, E.: Multi-temporal analysis of land cover changes using Landsat data through Google Earth Engine platform. In: Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), vol. 11524, p. 1152419. International Society for Optics and Photonics, August (2020)

    Google Scholar 

  30. Kauth, R.J.; Thomas, G.S.: The tasselled cap—a graphic description of the spectraltemporal development of agricultural crops as seen by landsat. In: Symposium on Machine Processing of Remotely Sensed Data. Purdue University, West Lafayette, Indiana, pp. 41–51 (1976)

    Google Scholar 

  31. Li, S., Chen, X.: A new bare-soil index for rapid mapping developing areas using landsat 8 data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 40, 139–144 (2014)

    Article  Google Scholar 

  32. Capolupo, A., Monterisi, C., Tarantino, E.: Landsat Images Classification Algorithm (LICA) to automatically extract land cover information in Google earth engine environment. Remote Sens. 12(7), 1201 (2020)

    Article  Google Scholar 

  33. Caprioli, M., Tarantino, E.: Accuracy assessment of per-field classification integrating very fine spatial resolution satellite imagery with topographic data. J. Geospat. Eng. 3, 127–134 (2001)

    Google Scholar 

  34. Caprioli, M., Scognamiglio, A., Strisciuglio, G., Tarantino, E.: Rules and standards for spatial data quality in GIS environments. In: 21st Int. Cartographic Conf. Durban, South Africa, 10–16 August (2003)

    Google Scholar 

  35. Pengra, B., Long, J., Dahal, D., Stehman, S.V., Loveland, T.R.: A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data. Remote Sens. Environ. 165, 234–248 (2015)

    Article  Google Scholar 

  36. Liang, S.: Narrowband to broadband conversions of land surface albedo I algorithms. Remote Sens. Environ. 76, 213–238 (2000)

    Article  Google Scholar 

  37. Smith, R.B. The heat budget of the earth’s surface deduced from space (2010). Available on this site

    Google Scholar 

  38. Pindozzi, S., Cervelli, E., Capolupo, A., Okello, C., Boccia, L.: Using historical maps to analyze two hundred years of land cover changes: case study of Sorrento peninsula (south Italy). Cartogr. Geogr. Inf. Sci. 43(3), 250–265 (2016)

    Article  Google Scholar 

  39. Li, Y., Chen, J., Lu, R., Gong P., Yue, T.: Study on land cover change detection method based on NDVI time series batasets: change detection indexes design. In: IGARSS, pp. 2323–2326 (2005)

    Google Scholar 

Download references

Acknowledgements

This research is partially funded under the project “AIM1871082-1” of the AIM (Attraction and International Mobility) Program, financed by the Italian Ministry of Education, University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Capolupo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capolupo, A., Monterisi, C., Sonnessa, A., Caporusso, G., Tarantino, E. (2021). Modeling Land Cover Impact on Albedo Changes in Google Earth Engine Environment. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12955. Springer, Cham. https://doi.org/10.1007/978-3-030-87007-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87007-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87006-5

  • Online ISBN: 978-3-030-87007-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics