MAIA S2 Versus Sentinel 2: Spectral Issues and Their Effects in the Precision Farming Context | SpringerLink
Skip to main content

MAIA S2 Versus Sentinel 2: Spectral Issues and Their Effects in the Precision Farming Context

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Precision agriculture involves the integration of new technologies including Geographic Information Systems (GIS), Global Navigation Satellites Systems (GNSS) and Remote Sensing (RS) platforms and sensors to allow farmers to maximize the cost-benefit ratio, rather than using the traditional whole-field approach. MAIA S2 is a recent multispectral aerial sensor in strong expansion in the agricultural sector. In this work, MAIA S2 spectral properties were compared with the correspondent Sentinel-2 ones, focusing on possible effects that differences could induce onto agriculture related deductions. The reference dataset was acquired by aerial survey and radiometric and geometric pre-processing achieved to generate the correspondent at-the-ground reflectance multispectral orthomosaic by ordinary workflow as suggested by sensor suppliers. A comparison was achieved at single band level to test spectral consistency of the two data. It showed a low correlation in the red-edge and infrared bands (r < 0.5); oppositely, a higher correlation was found for the visible bands (r > 0.8). To test the effects of found discrepancies between the two data, the correspondent prescription maps were generated using the same clustering criterion. They were then compared to test consistency of deductions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babaeian, E., et al.: others: A new optical remote sensing technique for high-resolution mapping of soil moisture. Front. Big Data 2, 37 (2019)

    Article  Google Scholar 

  2. Sishodia, R.P., Ray, R.L., Singh, S.K.: Applications of remote sensing in precision agriculture: A review. Remote Sens. 12, 3136 (2020)

    Article  Google Scholar 

  3. Monteleone, S., et al.: Exploring the adoption of precision agriculture for irrigation in the context of agriculture 4.0: the key role of internet of things. Sensors. 20, 7091 (2020)

    Article  Google Scholar 

  4. Borgogno-Mondino, E., Sarvia, F., Gomarasca, M.A.: Supporting insurance strategies in agriculture by remote sensing: a possible approach at regional level. In: Misra, Sanjay, Gervasi, Osvaldo, Murgante, Beniamino, Stankova, Elena, Korkhov, Vladimir, Torre, Carmelo, Rocha, Ana Maria A C., Taniar, David, Apduhan, Bernady O., Tarantino, Eufemia (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 186–199. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_15

    Chapter  Google Scholar 

  5. Sarvia, F., De Petris, S., Borgogno-Mondino, E.: Remotely sensed data to support insurance strategies in agriculture. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, p. 111491H. International Society for Optics and Photonics (2019)

    Google Scholar 

  6. Sarvia, F., De Petris, S., Borgogno-Mondino, E.: Multi-scale remote sensing to support insurance policies in agriculture: from mid-term to instantaneous deductions. GISci. Remote Sens. 57, 770–784 (2020). https://doi.org/10.1080/15481603.2020.1798600

    Article  Google Scholar 

  7. De Petris, S., Sarvia, F., Borgogno-Mondino, E.: A new index for assessing tree vigour decline based on sentinel-2 multitemporal data. Application to tree failure risk management. Remote Sens. Lett. 12(1), 58–67 (2020)

    Google Scholar 

  8. De Petris, S., Sarvia, F., Borgogno-Mondino, E.: RPAS-based photogrammetry to support tree stability assessment: Longing for precision arboriculture. Urban Forest. Urban Green. 55, 126862 (2020). https://doi.org/10.1016/j.ufug.2020.126862

    Article  Google Scholar 

  9. Sarvia, F., Xausa, E., Petris, S.D., Cantamessa, G., Borgogno-Mondino, E.: A possible role of copernicus sentinel-2 data to support common agricultural policy controls in agriculture. Agronomy 11, 110 (2021)

    Article  Google Scholar 

  10. Sarvia, F., De Petris, S., Borgogno-Mondino, E.: A methodological proposal to support estimation of damages from hailstorms based on copernicus sentinel 2 data times series. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 737–751. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_53

    Chapter  Google Scholar 

  11. De Petris, S., Sarvia, F., Gullino, M., Tarantino, E., Borgogno-Mondino, E.: Sentinel-1 polarimetry to map apple orchard damage after a storm. Remote Sens. 13, 1030 (2021). https://doi.org/10.3390/rs13051030

    Article  Google Scholar 

  12. De Petris, S., Sarvia, F., Borgogno-Mondino, E.: Multi-temporal mapping of flood damage to crops using sentinel-1 imagery: a case study of the Sesia River (October 2020), (2021)

    Google Scholar 

  13. Sarvia, F., De Petris, S., Borgogno-Mondino, E.: Exploring climate change effects on vegetation phenology by MOD13Q1 data: the Piemonte region case study in the period 2001–2019. Agronomy 11, 555 (2021). https://doi.org/10.3390/agronomy11030555

    Article  Google Scholar 

  14. Orusa, T., Orusa, R., Viani, A., Carella, E., Borgogno Mondino, E.: Geomatics and EO data to support wildlife diseases assessment at landscape level: a pilot experience to map infectious Keratoconjunctivitis in Chamois and phenological trends in Aosta Valley (NW Italy). Remote Sens. 12, 3542 (2020)

    Article  Google Scholar 

  15. van Klompenburg, T., Kassahun, A., Catal, C.: Crop yield prediction using machine learning: a systematic literature review. Comput. Electron. Agric. 177, 105709 (2020)

    Article  Google Scholar 

  16. Lessio, A., Fissore, V., Borgogno-Mondino, E.: Preliminary tests and results concerning integration of Sentinel-2 and Landsat-8 OLI for crop monitoring. J. Imaging 3, 49 (2017)

    Article  Google Scholar 

  17. Nocerino, E., Dubbini, M., Menna, F., Remondino, F., Gattelli, M., Covi, D.: Geometric calibration and radiometric correction of the MAIA multispectral camera. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 42(3), 149–156 (2017)

    Article  Google Scholar 

  18. Marinello, F.: Last generation instrument for agriculture multispectral data collection. Agric. Eng. Int. CIGR J. 19, 87–93 (2017)

    Google Scholar 

  19. Boccardo, P., Mondino, E.B., Tonolo, F.G.: High resolution satellite images position accuracy tests. In: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), pp. 2320–2322. IEEE (2003)

    Google Scholar 

  20. Mondino, E.B., Perotti, L., Piras, M.: High resolution satellite images for archeological applications: the Karima case study (Nubia region, Sudan). Eur. J. Remote Sens. 45, 243–259 (2012)

    Article  Google Scholar 

  21. Ryan, C.G., et al.: MAIA mapper: high definition XRF imaging in the lab. J. Instrum. 13, C03020 (2018)

    Article  Google Scholar 

  22. Segarra, J., Buchaillot, M.L., Araus, J.L., Kefauver, S.C.: Remote sensing for precision agriculture: sentinel-2 improved features and applications. Agronomy 10, 641 (2020)

    Article  Google Scholar 

  23. Maggiore, P., Greco, A.: Development of the SmartGimbal Control System for the SmartBay Platform (2019).

    Google Scholar 

  24. Gascon, F., Cadau, E., Colin, O., Hoersch, B., Isola, C., Fernández, B.L., Martimort, P.: Copernicus sentinel-2 mission: products, algorithms and Cal/Val. In: Earth Observing Systems XIX, p. 92181E. International Society for Optics and Photonics (2014)

    Google Scholar 

  25. Dechoz, C., et al.: Sentinel 2 global reference image. In: Image and Signal Processing for Remote Sensing XXI, p. 96430A. International Society for Optics and Photonics (2015)

    Google Scholar 

  26. Borgogno-Mondino, E.: Remote sensing from RPAS in agriculture: an overview of expectations and unanswered questions. In: Ferraresi, C., Quaglia, G. (eds.) RAAD 2017. MMS, vol. 49, pp. 483–492. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61276-8_51

    Chapter  Google Scholar 

  27. Brovelli, M.A., Crespi, M., Fratarcangeli, F., Giannone, F., Realini, E.: Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method. ISPRS J. Photogramm. Remote. Sens. 63, 427–440 (2008)

    Article  Google Scholar 

  28. Lanaras, C., Bioucas-Dias, J., Galliani, S., Baltsavias, E., Schindler, K.: Super-resolution of Sentinel-2 images: learning a globally applicable deep neural network. ISPRS J. Photogramm. Remote. Sens. 146, 305–319 (2018)

    Article  Google Scholar 

  29. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 30, 79–82 (2005)

    Article  Google Scholar 

  30. Chauhan, S., et al.: Wheat lodging assessment using multispectral UAV data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 42, 235–240 (2019)

    Article  Google Scholar 

  31. Gómez-Candón, D., López-Granados, F., Caballero-Novella, J.J., Peña-Barragán, J.M., García-Torres, L.: Understanding the errors in input prescription maps based on high spatial resolution remote sensing images. Precision Agric. 13, 581–593 (2012). https://doi.org/10.1007/s11119-012-9270-9

    Article  Google Scholar 

  32. Bates, T., Dresser, J., Eckstrom, R., Badr, G., Betts, T., Taylor, J.: Variable-rate mechanical crop adjustment for crop load balance in “Concord” vineyards. In: Presented at the 2018 IoT Vertical and Topical Summit on Agriculture - Tuscany, IOT Tuscany 2018 (2018). https://doi.org/10.1109/IOT-TUSCANY.2018.8373046

  33. Borgogno-Mondino, E., Lessio, A., Tarricone, L., Novello, V., de Palma, L.: A comparison between multispectral aerial and satellite imagery in precision viticulture. Precision Agric. 19(2), 195–217 (2017). https://doi.org/10.1007/s11119-017-9510-0

    Article  Google Scholar 

  34. Rokhmana, C.A.: The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environ. Sci. 24, 245–253 (2015)

    Article  Google Scholar 

  35. Borgogno-Mondino, E., Lessio, A., Gomarasca, M.A.: A fast operative method for NDVI uncertainty estimation and its role in vegetation analysis. Eur. J. Remote Sens. 49, 137–156 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Sarvia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarvia, F., De Petris, S., Orusa, T., Borgogno-Mondino, E. (2021). MAIA S2 Versus Sentinel 2: Spectral Issues and Their Effects in the Precision Farming Context. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12955. Springer, Cham. https://doi.org/10.1007/978-3-030-87007-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87007-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87006-5

  • Online ISBN: 978-3-030-87007-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics