Abstract
The conventional approach that often dominated spatial planning has prioritized urban expansion and new urban transport infrastructure without fully considering environmental aspects. While this has generated new urban models and economies, it has also significantly impacted the territory and landscape negatively. The construction of road infrastructure can improve the sustainability of a city from the point of view of connectivity between places. However, it also generates a disruption of the landscape with a consequent loss of ecosystem services. The case study concerns the evaluation of the preferable alternative, between two proposals, for the construction of a new road called the Teramo-Mare, connecting the Abruzzo hinterland with the Adriatic coast. The methodological approach investigates the scientific background in landscape assessment related to the construction of road infrastructures. By modelling the Multi-Criteria Decision Analysis (MCDA) with Fuzzy set theory and the Fuzzy Analytic Hierarchy Process (F-AHP) an evaluation method is tested to face the choice of the preferable alternative. The study provides an initial review of the scientific reference landscape and identifying criteria to help evaluate the option that has the least impact on the landscape and ecological system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Council of Europe: Council of Europe Landscape Convention. Contribution to human rights, democracy and sustainable development, Strasbourg (2018)
Selicato, M., Torre, C.M., Trofa, G.L.: Prospect of integrate monitoring: a multidimensional approach. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7334, pp. 144–156. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31075-1_11
Tudor, C.: An Approach to Landscape Character Assessment. Nature England, York (2014)
Attardi, R., Cerreta, M., Poli, G.: A collaborative multi-criteria spatial decision support system for multifunctional landscape evaluation. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9157, pp. 782–797. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21470-2_57
Saganeiti, L., Favale, A., Pilogallo, A., Scorza, F., Murgante, B.: Assessing urban fragmentation at regional scale using sprinkling indexes. Sustain. 10, 3274 (2018). https://doi.org/10.3390/SU10093274
Torre, C.M., Selicato, M.: The support of multidimensional approaches in integrate monitoring for SEA: a case of study. Earth Syst. Dyn. 4, 51–61 (2013). https://doi.org/10.5194/ESD-4-51-2013
Millennium Ecosystem Assessment: Ecosystems and Human Well-being: Synthesis Island Press Washington, DC (2005)
Malczewski, J., Rinner, C.: Multicriteria Decision Analysis in Geographic Information Science
SDSN: United Nation: Indicators and a Monitoring Framework for the Sustainable Development Goals Launching a data revolution for the SDGs. A report to the Secretary-General of the United Nations by the Leadership Council of the Sustainable Development Solutions (2015)
Lyu, H.-M., Sun, W.-J., Shen, S.-L., Zhou, A.-N.: Risk assessment using a new consulting process in fuzzy AHP. J. Constr. Eng. Manag. 146, 04019112 (2020). https://doi.org/10.1061/(asce)co.1943-7862.0001757
van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523–538 (2010). https://doi.org/10.1007/S11192-009-0146-3
Patra, S., Sahoo, S., Mishra, P., Mahapatra, S.C.: Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. J. Urban Manag. 7, 70–84 (2018). https://doi.org/10.1016/J.JUM.2018.04.006
Lambin, E.F., et al.: The causes of land-use and land-cover change: moving beyond the myths. Glob. Environ. Chang. 11, 261–269 (2001). https://doi.org/10.1016/S0959-3780(01)00007-3
Zhu, M., Xu, J., Jiang, N., Li, J., Fan, Y.: Impacts of road corridors on urban landscape pattern: a gradient analysis with changing grain size in Shanghai. China. Landsc. Ecol. 21, 723–734 (2006). https://doi.org/10.1007/s10980-005-5323-z
Ispra: L’inserimento paesaggistico delle infrastrutture stradali: Strumenti metodologici e buone pratiche di progetto (2010)
Klarenberg, G., MuñozCarpena, R., CampoBescós, M.A., Perz, S.G.: Highway paving in the southwestern Amazon alters long-term trends and drivers of regional vegetation dynamics. Heliyon 4, e00721 (2018). https://doi.org/10.1016/j.heliyon.2018.e00721
Müller, K., Steinmeier, C., Küchler, M.: Urban growth along motorways in Switzerland. Landsc. Urban Plan. 98, 3–12 (2010). https://doi.org/10.1016/j.landurbplan.2010.07.004
Wu, C.F., Lin, Y.P., Chiang, L.C., Huang, T.: Assessing highway’s impacts on landscape patterns and ecosystem services: a case study in Puli Township. Taiwan. Landsc. Urban Plan. 128, 60–71 (2014). https://doi.org/10.1016/j.landurbplan.2014.04.020
Creutzig, F., et al.: Transport: a roadblock to climate change mitigation? Science 350(6263), 911–912 (2015). https://doi.org/10.1126/science.aac8033
Torres, A., Jaeger, J.A.G., Alonso, J.C.: Assessing large-scale wildlife responses to human infrastructure development. Proc. Natl. Acad. Sci. U. S. A. 113, 8472–8477 (2016). https://doi.org/10.1073/pnas.1522488113
Shannon, G., Angeloni, L.M., Wittemyer, G., Fristrup, K.M., Crooks, K.R.: Road traffic noise modifies behaviour of a keystone species. Anim. Behav. 94, 135–141 (2014). https://doi.org/10.1016/j.anbehav.2014.06.004
Ibisch, P.L.: A global map of roadless areas and their conservation status. Science 80(354), 1423–1427 (2016). https://doi.org/10.1126/science.aaf7166
Southworth, J., et al.: Roads as drivers of change: trajectories across the tri-national frontier in MAP, the southwestern Amazon. Remote Sens. 3, 1047–1066 (2011). https://doi.org/10.3390/rs3051047
Meijer, J.R., Huijbregts, M.A.J., Schotten, K.C.G.J., Schipper, A.M.: Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018). https://doi.org/10.1088/1748-9326/aabd42
Brady, S.P., Richardson, J.L.: Road ecology: shifting gears toward evolutionary perspectives. Front. Ecol. Environ. 15, 91–98 (2017). https://doi.org/10.1002/fee.1458
Elburz, Z., Cubukcu, K.M.: Spatial effects of transport infrastructure on regional growth: the case of Turkey. Spat. Inf. Res. 29(1), 19–30 (2020). https://doi.org/10.1007/s41324-020-00332-y
Forman, R.T.T., Deblinger, R.: The ecological road-effect zone of a Massachusetts (U.S.A.) suburban highway. Conserv. Biol. 14(1), 36–46 (2000). https://doi.org/10.1046/j.1523-1739.2000.99088.x
Feng, S., et al.: Quantification of the environmental impacts of highway construction using remote sensing approach. Remote Sens. 13, 1340 (2021). https://doi.org/10.3390/rs13071340
Song, Y., Jin, L., Wang, H.: Vegetation changes along the Qinghai-Tibet plateau engineering corridor since 2000 induced by climate change and human activities. Remote Sens. 10, 95 (2018). https://doi.org/10.3390/rs10010095
Forman, R.T.T.: Estimate of the area affected ecologically by the road system in the United States. Conserv. Biol. 14, 31–35 (2000). https://doi.org/10.1046/j.1523-1739.2000.99299.x
Fusco Girard, L.: Sviluppo sostenibile ed aree interne: quali strategie e quali valutazioni. Aestimum (2009). https://doi.org/10.13128/Aestimum-7317
Morano, P., Tajani, F., Anelli, D.: A decision support model for investment through the Social Impact Bonds. The case of the city of Bari (Italy). Valori e Valutazioni, 163–178 (2020)
Anelli, D., Sica, F.: The financial feasibility analysis of urban transformation projects: an application of a quick assessment model. In: Bevilacqua, C., Calabrò, F., Spina, L.D. (eds.) NMP 2020. SIST, vol. 178, pp. 462–474. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-48279-4_44
Serrano, M., Sanz, L., Puig, J., Pons, J.: Landscape fragmentation caused by the transport network in Navarra (Spain). Two-scale analysis and landscape integration assessment. Landsc. Urban Plan. 58, 113–123 (2002). https://doi.org/10.1016/S0169-2046(01)00214-6
Author information
Authors and Affiliations
Contributions
Conceptualization, M.C., G.P., M.S.; methodology, G.P., M.S.; validation, M.Cerreta, G.P.; formal analysis, G.P., M.S.; investigation, M.S.; writing-original draft preparation, G.P., M.S.; writing-review and editing, M.C., G.P., M.S.; visualization, M.S.; supervision, M.C., G.P. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Cerreta, M., Poli, G., Somma, M. (2021). Assessing Infrastructures Alternatives: The Implementation of a Fuzzy Analytic Hierarchy Process (F-AHP). In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12955. Springer, Cham. https://doi.org/10.1007/978-3-030-87007-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-87007-2_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87006-5
Online ISBN: 978-3-030-87007-2
eBook Packages: Computer ScienceComputer Science (R0)