A Remote Sensing Methodology to Assess the Abandoned Arable Land Using NDVI Index in Basilicata Region | SpringerLink
Skip to main content

A Remote Sensing Methodology to Assess the Abandoned Arable Land Using NDVI Index in Basilicata Region

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

European Commission in 2009 assessed that in the period 2015–2030 about 11% of agricultural land in the EU are under high potential risk of abandonment due to factors, which has strong and known environmental and socio-economic consequences. The diverse impacts of abandonment need to be addressed via a broader set of policy instruments to alleviate the negative effects or even - reverse the trends in the early stages of the process. The clear identification of abandoned agricultural land is fundamental for a correct mapping for the future management and monitoring of the territories. In this context, this study proposes an innovative method for the detection and mapping of abandoned arable land through the use of remote sensing techniques and geo-statistical analysis. The combined use of Sentinel 2 images and the Landsat constellation, the use of NDVI index and change detection analysis made it possible to identify the change in agricultural use and/or abandonment of land in the eastern part of the Basilicata region in the period 1990–2020. (Italy). All process has been developed integrating Remote Sensing and Geographic Information System (GIS), using open-source software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rey Benayas, J.M.: Abandonment of agricultural land: an overview of drivers and consequences. CAB Rev.: Perspect. Agric. Veterinary Sci. Nutrition Natl. Resourc. 2(057),(2007). https://doi.org/10.1079/PAVSNNR20072057

  2. Bradley, B.A., Jacob, R.W., Hermance, J.F., Mustard, J.F.: A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens. Environ. 106(2), 137–145 (2007). https://doi.org/10.1016/j.rse.2006.08.002

    Article  Google Scholar 

  3. Brown, M.E., Pinzon, J.E., Didan, K., Morisette, J.T., Tucker, C.J.: Evaluation of the consistency of long-term NDVI time series derived from AVHRR,SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Trans. Geosci. Remote Sens. 44(7), 1787–1793 (2006). https://doi.org/10.1109/TGRS.2005.860205

    Article  Google Scholar 

  4. de Jong, R., de Bruin, S., de Wit, A., Schaepman, M.E., Dent, D.L.: Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 115(2), 692–702 (2011). https://doi.org/10.1016/j.rse.2010.10.011

    Article  Google Scholar 

  5. Earth explorer USGS home page. https://earthexplorer.usgs.gov/

  6. European Commission (EC): Development of Agri-Environmental Indicatorsfor Monitoring the Integration of Environmental Concerns into the CommonAgricultural Policy. SEC (2006), vol. 1136. Commission of the European Communities, Brussels (2006)

    Google Scholar 

  7. European Commission: EU Agricultural Outlook: Prospects for EU agricultural markets and income 2016–2026 (2016b)

    Google Scholar 

  8. Falcucci, A., Maiorano, L., Boitani, L.: Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecol. 22(4), 617–631 (2007)

    Article  Google Scholar 

  9. Food and Agriculture Organization of the United Nations (FAO): WorldAgriculture: Towards 2015/2030 an FAO Perspective. Chapter 12: Agricultureand the Environment: Changing Pressures, Solutions and Trade-offs. Earthscan, London (2003)

    Google Scholar 

  10. Filizzola, C., et al.: On the use of temporal vegetation indices in support of eligibility controls for EU aids in agriculture. Int. J. Remote Sens. 39(14), 4572–4598 (2018). https://doi.org/10.1080/01431161.2017.1395973

  11. Gellrich, M., Zimmermann, N.E.: Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: a spatial statistical modelling approach. Landsc. Urban Plan. 79(1), 65–76 (2007)

    Article  Google Scholar 

  12. Ispra/Snpa home page. https://www.isprambiente.gov.it/it/servizi/sistema-carta-della-natura

  13. Khorchani, M., et al.: Effects of active and passive land use management after cropland abandonment on water and vegetation dynamics in the Central Spanish Pyrenees. Sci. Total Environ. 717, 137160 (2020). https://doi.org/10.1016/j.scitotenv.2020.137160

  14. Land Copernicus Home page. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018

  15. Casas, G.L., Scorza, F., Murgante, B.: New urban agenda and open challenges for urban and regional planning. In: Calabrò, F., Spina, L.D., Bevilacqua, C. (eds.) ISHT 2018. SIST, vol. 100, pp. 282–288. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92099-3_33

    Chapter  Google Scholar 

  16. Martínez, B., Gilabert, M.A.: Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens. Environ. 113(9), 1823–1842 (2009). https://doi.org/10.1016/j.rse.2009.04.016

    Article  Google Scholar 

  17. Mohammed, I., Marshall, M., de Bie, K., Estes, L., Nelson, A.: A blended census and multiscale remote sensing approach to probabilistic cropland mapping in complex landscapes. ISPRS J. Photogramm. Remote. Sens. 161, 233–245 (2020)

    Article  Google Scholar 

  18. Murgante, B., Borruso, G., Balletto, G., Castiglia, P., Dettori, M.: Why Italy first? health, geographical and planning aspects of the COVID-19 outbreak. Sustainability 12(12), 5064 (2020). https://doi.org/10.3390/su12125064

    Article  Google Scholar 

  19. Nolè, G., Lasaponara, R., Lanorte, A., Murgante, B.: Quantifying Urban Sprawl with spatial autocorrelation techniques using multi-temporal satellite data. Int. J. Agric. Environ. Inf. Syst. 5(2), 19–37 (2014). https://doi.org/10.4018/IJAEIS.2014040102

    Article  Google Scholar 

  20. Castillo, C.P., Aliaga, E.C., Lavalle, C., Llario, J.C.M.: An assessment and spatial modelling of agricultural land abandonment in Spain (2015–2030). Sustainability 12(2), 560 (2020). https://doi.org/10.3390/su12020560

    Article  Google Scholar 

  21. REG.CEE 1272/88

    Google Scholar 

  22. Scorza, F., Las, G.B., Casas, B.M.: That’s ReDO: ontologies and regional development planning. In: Murgante, B., et al. (eds.) Computational Science and Its Applications – ICCSA 2012, pp. 640–652. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31075-1_48

  23. Statuto, D., Cillis, G., Picuno, P.: Using historical maps within a GIS to analyze two centuries of rural landscape changes in Southern Italy. Land 6(3), 65 (2017)

    Article  Google Scholar 

  24. Suziedelyte Visockiene, J., Tumeliene, E., Maliene, V.: Analysis and identification of abandoned agricultural land using remote sensing methodology. Land Use Policy 82, 709–715 (2019). https://doi.org/10.1016/j.landusepol.2019.01.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Santarsiero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santarsiero, V. et al. (2021). A Remote Sensing Methodology to Assess the Abandoned Arable Land Using NDVI Index in Basilicata Region. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12954. Springer, Cham. https://doi.org/10.1007/978-3-030-86979-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86979-3_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86978-6

  • Online ISBN: 978-3-030-86979-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics