A Remote Sensing and Geo-Statistical Approaches to Mapping Burn Areas in Apulia Region (Southern Italy) | SpringerLink
Skip to main content

A Remote Sensing and Geo-Statistical Approaches to Mapping Burn Areas in Apulia Region (Southern Italy)

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Fires represents one of the main causes of environmental degradation and have an important negative impact on the landscape. Fires, in fact, strongly influenced ecological processes and compromise the ecosystems. Measurements of the post-fire damage levels over burned areas are important to quantify fire’s impact on landscapes. Remote sensing and geo-statistical approaches are useful tools for the monitoring and analysis of burned areas on a regional scale, because provides reliable and rapid diagnosis of burned areas. Spatial autocorrelation statistics, such as Moran’s I and Getis–Ord Local Gi index, were also used to measure and analyze dependency degree among spectral features of burned areas. This approach improves characterization of a burnt area and improves the estimate of the severity of the fire. This paper provides an application of fire severity studies describing post-fire spectral responses of fire affected vegetation to obtain a burned area map. The aim of this work is to implement a procedure, using ESA Sentinel 2 data and spatial autocorrelation statistics in a GIS open-source environment, a graphical model that analyzes the change detection of the potential burned area, as case of study Northern part of Apulia Region (Italy) was used. The burned area was delineated using the spectral indices calculated using Sentinel two images in the period July–August 2020 and using also the land use map of the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson, P.M., Lewis, P.: Geostatistical classification for remote sensing: an introduction. Comput. Geosci. 26.4, 361–371 (2000)

    Google Scholar 

  2. Bar, S., Parida, B.R., Pandey, A.C.: Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sens. Appl.: Soc. Environ. 18, 100324 (2020). https://doi.org/10.1016/j.rsase.2020.100324

    Article  Google Scholar 

  3. Bohórquez, L., Gómez, I., Santa, F.: Methodology for the discrimination of areas affected by forest fires using satellite images and spatial statistics. Procedia Environ. Sci. 7, 389–394 (2011)

    Article  Google Scholar 

  4. Copernicus homepage. https://scihub.copernicus.eu/dhus/#/home

  5. Curran, P.J., Atkinson, P.M.: Geostatistics and remote sensing. Prog. Phys. Geogr. 22(1), 61–78 (1998)

    Article  Google Scholar 

  6. Danese, M., Nolè, G., Murgante, B.: Visual impact assessment in urban planning. In: Murgante, B., Borruso, G., Lapucci, A. (eds.) Geocomputation and Urban Planning. Studies in Computational Intelligence, vol. 176. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-540-89930-3_8

  7. de Vasconcelos, S.S., et al.: Variability of vegetation fires with rain and deforestation in Brazil's state of Amazonas. Remote Sens. Environ. 136, 199–209 (2013)

    Google Scholar 

  8. Epting, J., Verbyla, D., Sorbel, B.: Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 96(3–4), 328–339 (2005)

    Article  Google Scholar 

  9. Getis, A., Keith Ord, J.: The analysis of spatial association by use of distance statistics. Perspectives on Spatial Data Analysis, pp. 127–145. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-01976-0_10

  10. Gibson, R., Danaher, T., Hehir, W., Collins, L.: A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 240, 111702 (2020). https://doi.org/10.1016/j.rse.2020.111702

    Article  Google Scholar 

  11. Giglio, L., Boschetti, L., Roy, D.P., Humber, M.L., Justice, C.O.: The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018)

    Article  Google Scholar 

  12. Hagolle, O., et al. “A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images. Remote Sens. 7.3, 2668–2691 (2015)

    Google Scholar 

  13. Hagolle, O., Huc, M., Villa Pascual, D., Dedieu, G.: A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 114(8), 1747–1755 (2010). https://doi.org/10.1016/j.rse.2010.03.002

    Article  Google Scholar 

  14. Hall, R.J., Freeburn, J.T., de Groot, W.J., Pritchard, J.M., Lynham, T.J., Landry, R.: Remote sensing of burn severity: experience from western Canada boreal fires. Int. J. Wildland Fire 17(4), 476 (2008). https://doi.org/10.1071/WF08013

    Article  Google Scholar 

  15. Illian, J., et al.: Statistical Analysis and Modelling of Spatial Point Patterns. vol. 70. John Wiley & Sons (2008)

    Google Scholar 

  16. ISPRA homepage. http://cartanatura.isprambiente.it/Database/RiferimentiCartografici.php

  17. Key, C.H.: Ecological and sampling constraints on defining landscape fire severity. Fire Ecol. 2(2), 34–59 (2006)

    Article  Google Scholar 

  18. Key, C.: Glacier Field Station Center. Evaluate sensitivities of burn-severity mapping algorithms for different ecosystems and fire histories in the United States (2006)

    Google Scholar 

  19. Lanorte, A., et al.: Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Observ. Geoinf. 20, 42–51 (2013)

    Google Scholar 

  20. Casas, G.L., Scorza, F., Murgante, B.: New urban agenda and open challenges for urban and regional planning. In: Calabrò, F., Spina, L.D., Bevilacqua, C. (eds.) ISHT 2018. SIST, vol. 100, pp. 282–288. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92099-3_33

    Chapter  Google Scholar 

  21. Miller, J.D., Thode, A.E.: Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 109, 66–80 (2007)

    Article  Google Scholar 

  22. Miller, J.D., et al.: Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA.“ Remote Sens. Environ. 113.3, 645–656 (2009)

    Google Scholar 

  23. Murgante, B., et al.: A spatial rough set for locating the periurban fringe. SAGEO (2007)

    Google Scholar 

  24. Nolè, G., et al.: Model of Post Fire Erosion Assessment Using RUSLE Method, GIS Tools and ESA Sentinel DATA. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12253, pp. 505–516. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58814-4_36

  25. Nolè, G., Lasaponara, R., Lanorte, A., Murgante, B.: Quantifying Urban Sprawl with spatial autocorrelation techniques using multi-temporal satellite data. Int. J. Agric. Environ. Inf. Syst. 5(2), 19–37 (2014). https://doi.org/10.4018/IJAEIS.2014040102

    Article  Google Scholar 

  26. Rauste, Y., et al. “Satellite-based forest fire detection for fire control in boreal forests. Int. J. Remote Sens. 18.12, 2641–2656 (1997)

    Google Scholar 

  27. Santarsiero, V., et al..: Assessment of Post Fire Soil Erosion with ESA Sentinel-2 Data and RUSLE Method in Apulia Region (Southern Italy). In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 590–603. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_43

  28. Telesca, L., Amatulli, G., Lasaponara, R., Lovallo, M., Santulli, A.: Time-scaling properties in forest-fire sequences observed in Gargano area (southern Italy). Ecol. Model. 185(2–4), 531–544 (2005). https://doi.org/10.1016/j.ecolmodel.2005.01.009

    Article  Google Scholar 

  29. Theia homepage. https://theia.cnes.fr/atdistrib/rocket/#/home

  30. Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46(sup1), 234–240 (1970)

    Article  Google Scholar 

  31. van Wagtendonk, J.W., Root, R.R., Key, C.H.: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sens. Environ. 92(3), 397–408 (2004). https://doi.org/10.1016/j.rse.2003.12.015

    Article  Google Scholar 

  32. Xiao, X., Braswell, B., Zhang, Q., Boles, S., Frolking, S., Moore, B.: Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia. Remote Sens. Environ. 84(3), 385–392 (2003). https://doi.org/10.1016/S0034-4257(02)00129-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Santarsiero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santarsiero, V. et al. (2021). A Remote Sensing and Geo-Statistical Approaches to Mapping Burn Areas in Apulia Region (Southern Italy). In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12954. Springer, Cham. https://doi.org/10.1007/978-3-030-86979-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86979-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86978-6

  • Online ISBN: 978-3-030-86979-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics