Earthquake Prediction Based on Combined Seismic and GPS Monitoring Data | SpringerLink
Skip to main content

Earthquake Prediction Based on Combined Seismic and GPS Monitoring Data

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

This article presents the results of applying the method of the minimum area of alarm to the complex forecasting of earthquakes based on data of different types. Point fields of earthquake epicenters and time series of displacements of the earth’s surface, measured using GPS, were used for the prediction. Testing was carried out for earthquakes with a hypocenter depth of up to 60 km for two regions with different seismotectonics: Japan, the forecast time interval from 2016 to 2020, magnitudes \(m \ge 6\); California, the forecast time interval from 2013 to 2020, magnitude \(m \ge 5.5\). Testing has shown the effectiveness of systematic earthquake forecasting using seismological and space geodesy data in combination.

This research was partially funded by Russian Foundation for Basic Research grant number 20-07-00445.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnhart, W.D., Hayes, G.P., Wald, D.J.: Global earthquake response with imaging geodesy: recent examples from the USGS NEIC. Remote Sens. 11(11), 1357 (2019)

    Article  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  3. Blewitt, G., Hammond, W.C., Kreemer, C.: Harnessing the GPS data explosion for interdisciplinary science. Eos 99(10.1029) (2018)

    Google Scholar 

  4. Dobrovolsky, I., Zubkov, S., Miachkin, V.: Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 117(5), 1025–1044 (1979)

    Article  Google Scholar 

  5. Garagash, I., Bondur, V., Gokhberg, M., Steblov, G.: Three-year experience of the fortnight forecast of seismicity in Southern California on the basis of geomechanical model and the seismic data. In: AGU Fall Meeting Abstracts, vol. 2011, pp. NH23A-1535 (2011)

    Google Scholar 

  6. Geller, R.J., Jackson, D.D., Kagan, Y.Y., Mulargia, F.: Earthquakes cannot be predicted. Science 275(5306), 1616 (1997)

    Article  Google Scholar 

  7. Gitis, V., Derendyaev, A.: The method of the minimum area of alarm for earthquake magnitude prediction. Front. Earth Sci. 8, 482 (2020)

    Google Scholar 

  8. Gitis, V.G., Derendyaev, A.B.: Machine learning methods for seismic hazards forecast. Geosciences 9(7), 308 (2019)

    Article  Google Scholar 

  9. Gufeld, I.L., Matveeva, M.I., Novoselov, O.N.: Why we cannot predict strong earthquakes in the earth’s crust. Geodyn. Tectonophys. 2(4), 378–415 (2015)

    Article  Google Scholar 

  10. Guomin, Z., Zhaocheng, Z.: The study of multidisciplinary earthquake prediction in China. J. Earthq. Predction Res. 1(1), 71–85 (1992)

    Google Scholar 

  11. Kanamori, H.: The nature of seismicity patterns before large earthquakes (1981)

    Google Scholar 

  12. Keilis-Borok, V., Soloviev, A.A.: Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. Springer, Heidelberg (2013)

    Google Scholar 

  13. Khan, S.S., Madden, M.G.: A survey of recent trends in one class classification. In: Coyle, L., Freyne, J. (eds.) AICS 2009. LNCS (LNAI), vol. 6206, pp. 188–197. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17080-5_21

    Chapter  Google Scholar 

  14. King, C.Y.: Gas geochemistry applied to earthquake prediction: an overview. J. Geophys. Res. Solid Earth 91(B12), 12269–12281 (1986)

    Article  Google Scholar 

  15. Koronovsky, N., Naimark, A.: Earthquake prediction: is it a practicable scientific perspective or a challenge to science? Mosc. Univ. Geol. Bull. 64(1), 10–20 (2009)

    Article  Google Scholar 

  16. Kossobokov, V.: User manual for M8. In: Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (eds.) Algorithms for Earthquake Statistics and Prediction, vol. 6, pp. 167–222 (1997)

    Google Scholar 

  17. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160(1), 3–24 (2007)

    Google Scholar 

  18. Lighthill, J.: A Critical Review of VAN: Earthquake Prediction from Seismic Electrical Signals. World Scientific (1996)

    Google Scholar 

  19. Lobkovsky, L., Vladimirova, I., Gabsatarov, Y.V., Steblov, G.: Seismotectonic deformations related to the 2011 Tohoku earthquake at different stages of the seismic cycle, based on satellite geodetic observations. Doklady Earth Sci. 481, 1060–1065 (2018)

    Article  Google Scholar 

  20. Mogi, K.: Two kinds of seismic gaps. Pure Appl. Geophys. 117(6), 1172–1186 (1979)

    Article  Google Scholar 

  21. Obara, K., Kasahara, K., Hori, S., Okada, Y.: A densely distributed high-sensitivity seismograph network in Japan: Hi-net by national research institute for earth science and disasterprevention. Rev. Sci. Instrum. 76(2), 021301 (2005)

    Article  Google Scholar 

  22. Okada, Y., et al.: Recent progress of seismic observation networks in Japan-Hi-net, F-net, K-net and KiK-net. Earth Planets Space 56(8), xv–xxviii (2004)

    Google Scholar 

  23. Rhoades, D.A.: Application of the EEPAS model to forecasting earthquakes of moderate magnitude in southern California. Seismol. Res. Lett. 78(1), 110–115 (2007)

    Article  Google Scholar 

  24. Rhoades, D.A.: Mixture models for improved earthquake forecasting with short-to-medium time horizons. Bull. Seismol. Soc. Am. 103(4), 2203–2215 (2013)

    Article  Google Scholar 

  25. Shebalin, P.N., Narteau, C., Zechar, J.D., Holschneider, M.: Combining earthquake forecasts using differential probability gains. Earth Planets Space 66(1), 1–14 (2014). https://doi.org/10.1186/1880-5981-66-37

    Article  Google Scholar 

  26. Sobolev, G.: Principles of earthquake prediction (1993)

    Google Scholar 

  27. Sobolev, G., Ponomarev, A.: Earthquake Physics and Precursors. Publishing House Nauka, Moscow (2003)

    Google Scholar 

  28. Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988)

    Article  Google Scholar 

  29. Zavyalov, A.: Intermediate Term Earthquake Prediction. Nauka, Moscow (2006)

    Google Scholar 

  30. Zhang, L.Y., Mao, X.B., Lu, A.H.: Experimental study of the mechanical properties of rocks at high temperature. Sci. China Ser. E 52(3), 641–646 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gitis, V.G., Derendyaev, A.B., Petrov, K.N. (2021). Earthquake Prediction Based on Combined Seismic and GPS Monitoring Data. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12954. Springer, Cham. https://doi.org/10.1007/978-3-030-86979-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86979-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86978-6

  • Online ISBN: 978-3-030-86979-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics