Abstract
Price forecasting is a challenging and essential problem studied in different markets. Many researchers and institutions, academically and professionally, develop future price forecasting techniques. This study proposes a data collection and processing pipeline to forecast the next day’s price of a product in business to consumer (B2C) markets using the price data obtained from web crawlers, preprocessing steps, the deep features produced by the autoencoder, and the technical indicators. For this purpose, we use web crawlers to collect different airline companies’ ticket prices daily and create a price index. We apply the discrete wavelet transform (DWT) preprocessing method to denoise the price index data, calculate some technical indicators analytically, and extract the deep features of the price data via three different autoencoders, linear, stacked linear, and long short term memory (LSTM). An LSTM forecaster generates forecasts using deep and calculated features. Finally, we measure the effects of autoencoder types, and mentioned features on the forecasting performance. Our study shows that using LSTM autoencoder on denoised time series price data with technical indicators in B2C markets yields promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
He, P., Zhang, S., He, C.: Impacts of logistics resource sharing on b2c e-commerce companies and customers. Electron. Commer. Res. Appl. 34, 100820 (2019). https://doi.org/10.1016/j.elerap.2018.100820. https://www.sciencedirect.com/science/article/pii/S1567422318300863
2020 yılı İlk 6 ay e-ticaret verileri açklandı (2020). https://www.eticaret.gov.tr/haberler/10040/detay
e-ticaret platformlarında 65 yaş üstü kullanıcı oranı yüzde 6’dan yüzde 10’a çıktı (2021). https://www.aa.com.tr/tr/ekonomi/e-ticaret-platformlarinda-65-yas-ustu-kullanici-orani-yuzde-6dan-yuzde-10a-cikti/2182333
Zhao, K., Wang, C.: Sales forecast in e-commerce using convolutional neural network (2017)
Hsieh, P.-H.: A study of models for forecasting e-commerce sales during a price war in the medical product industry. In: Nah, F.F.-H., Siau, K. (eds.) HCII 2019. LNCS, vol. 11588, pp. 3–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22335-9_1
Yan, R., Ghose, S.: Forecast information and traditional retailer performance in a dual-channel competitive market. J. Bus. Res. 63(1), 77–83 (2010). https://doi.org/10.1016/j.jbusres.2009.02.017. https://www.sciencedirect.com/science/article/pii/S0148296309000460
Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., Seaman, B.: Sales demand forecast in e-commerce using a long short-term memory neural network methodology. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11955, pp. 462–474. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36718-3_39
Gürbüz, A., Aktaş, M.S.: Prediction of purchase intention on the e-commerce clickstream data. In: 2019 27th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2019). https://doi.org/10.1109/SIU.2019.8806311
Fronzetti Colladon, A., Guardabascio, B., Innarella, R.: Using social network and semantic analysis to analyze online travel forums and forecast tourism demand. Decis. Supp. Syst. 123, 113075 (2019). https://doi.org/10.1016/j.dss.2019.113075. https://www.sciencedirect.com/science/article/pii/S0167923619301046
Law, R., Li, G., Fong, D.K.C., Han, X.: Tourism demand forecasting: a deep learning approach. Ann. Tour. Res. 75, 410–423 (2019). https://doi.org/10.1016/j.annals.2019.01.014, https://www.sciencedirect.com/science/article/pii/S0160738319300143
Tseng, K.K., Lin, R.F.Y., Zhou, H., Kurniajaya, K.J., Li, Q.: Price prediction of e-commerce products through internet sentiment analysis. Electron. Commer. Res. 18(1), 65–88 (2018). https://doi.org/10.1007/s10660-017-9272-9
Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS ONE 12(7), e0180944 (2017)
Aktas, M., Astekin, M.: Provenance aware run-time verification of things for self-healing internet of things applications. Concurr. Comput. Pract. Exp. (2019). https://doi.org/10.1002/cpe.4263
Tufek, A., Aktas, M.S.: On the provenance extraction techniques from large scale log files: a case study for the numerical weather prediction models. In: Balis, B., et al. (eds.) Euro-Par 2020. LNCS, vol. 12480, pp. 249–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71593-9_20
Tas, Y., Baeth, M., Aktas, M.: An approach to standalone provenance systems for big social provenance data. In: 2016 12th International Conference on Semantics, Knowledge and Grids (SKG), pp. 9–16 (2016)
Riveni, M., Nguyen, T., Aktas, M., Dustdar, S.: Application of provenance in social computing: a case study. Concurr. Comput.: Pract. Exp. 31(3), e4894 (2019)
Baeth, M., Aktas, M.: An approach to custom privacy policy violation detection problems using big social provenance data. Concurr. Comput.: Pract. Exp. 30(21), e4690 (2018)
Baeth, M., Aktas, M.: Detecting misinformation in social networks using provenance data. Concurr. Comput.: Pract. Exp. 31(3), e4793 (2019)
Jensen, S., Plale, B., Aktas, M., Luo, Y., Chen, P., Conover, H.: Provenance capture and use in a satellite data processing pipeline. IEEE Trans. Geosci. Remote Sens. 51(11), 5090–5097 (2013). https://doi.org/10.1109/TGRS.2013.2266929
Tufek, A., Gurbuz, A., Ekuklu, O.F., Aktas, M.S.: Provenance collection platform for the weather research and forecasting model. In: 2018 14th International Conference on Semantics, Knowledge and Grids (SKG), SKG ’18, 14th International Conference on Semantics, Knowledge and Grids (SKG), Guangzhou, China, IEEE, pp. 17–24 (2018). https://doi.org/10.1109/SKG.2018.00009
Yazıcı, I., Karabulut, E., Aktas, M.: A data provenance visualization approach. In: The 14th International Conference on Semantics, Knowledge and Grids (2018)
Uygun, Y., Oguz, R., Olmezogullari, E., Aktas, M.: On the large-scale graph data processing for user interface testing in big data science projects. In: IEEE BigData 2020, pp. 2049–2056. IEEE (2020)
Olmezogullari, E., Aktas, M.: Representation of click-stream data sequences for learning user navigational behavior by using embeddings. In: In: IEEE BigData 2020, pp. 3173–3179. IEEE (2020)
Li, Y., Cao, H.: Prediction for tourism flow based on LSTM neural network. Procedia Comput. Sci. 129, 277–283 (2018)
Chaovalit, P., Gangopadhyay, A., Karabatis, G., Chen, Z.: Discrete wavelet transform-based time series analysis and mining. ACM Comput. Surv. 43(2), 1–37 (2011). https://doi.org/10.1145/1883612.1883613
Conejo, A.J., Plazas, M.A., Espinola, R., Molina, A.B.: Day-ahead electricity price forecasting using the wavelet transform and arima models. IEEE Trans. Power Syst. 20(2), 1035–1042 (2005). https://doi.org/10.1109/TPWRS.2005.846054
Wang, L., Zhang, Z., Chen, J.: Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst. 32(4), 2673–2681 (2017). https://doi.org/10.1109/TPWRS.2016.2628873
Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)
Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on CEEMDAN and LSTM. Physica A 519, 127–139 (2019)
Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches. Energies 11(7), 1636 (2018)
Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)
Ramsey, J.B., Lampart, C.: The decomposition of economic relationships by time scale using wavelets: expenditure and income. Stud. Nonlinear Dyn. Econ. 3(1) (1998)
Chollet, F., et al.: Deep Learning with Python, vol. 361. Manning, New York (2018)
Acknowledgments
This study is carried out using the data center and web crawler facilities of Cloud Computing and Big Data Research Laboratory (B3LAB) of TÜBİTAK BİLGEM.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Eğriboz, E., Aktaş, M.S. (2021). Price Forecasting with Deep Learning in Business to Consumer Markets. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12954. Springer, Cham. https://doi.org/10.1007/978-3-030-86979-3_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-86979-3_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86978-6
Online ISBN: 978-3-030-86979-3
eBook Packages: Computer ScienceComputer Science (R0)