Price Forecasting with Deep Learning in Business to Consumer Markets | SpringerLink
Skip to main content

Price Forecasting with Deep Learning in Business to Consumer Markets

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Price forecasting is a challenging and essential problem studied in different markets. Many researchers and institutions, academically and professionally, develop future price forecasting techniques. This study proposes a data collection and processing pipeline to forecast the next day’s price of a product in business to consumer (B2C) markets using the price data obtained from web crawlers, preprocessing steps, the deep features produced by the autoencoder, and the technical indicators. For this purpose, we use web crawlers to collect different airline companies’ ticket prices daily and create a price index. We apply the discrete wavelet transform (DWT) preprocessing method to denoise the price index data, calculate some technical indicators analytically, and extract the deep features of the price data via three different autoencoders, linear, stacked linear, and long short term memory (LSTM). An LSTM forecaster generates forecasts using deep and calculated features. Finally, we measure the effects of autoencoder types, and mentioned features on the forecasting performance. Our study shows that using LSTM autoencoder on denoised time series price data with technical indicators in B2C markets yields promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He, P., Zhang, S., He, C.: Impacts of logistics resource sharing on b2c e-commerce companies and customers. Electron. Commer. Res. Appl. 34, 100820 (2019). https://doi.org/10.1016/j.elerap.2018.100820. https://www.sciencedirect.com/science/article/pii/S1567422318300863

  2. 2020 yılı İlk 6 ay e-ticaret verileri açklandı (2020). https://www.eticaret.gov.tr/haberler/10040/detay

  3. e-ticaret platformlarında 65 yaş üstü kullanıcı oranı yüzde 6’dan yüzde 10’a çıktı (2021). https://www.aa.com.tr/tr/ekonomi/e-ticaret-platformlarinda-65-yas-ustu-kullanici-orani-yuzde-6dan-yuzde-10a-cikti/2182333

  4. Zhao, K., Wang, C.: Sales forecast in e-commerce using convolutional neural network (2017)

    Google Scholar 

  5. Hsieh, P.-H.: A study of models for forecasting e-commerce sales during a price war in the medical product industry. In: Nah, F.F.-H., Siau, K. (eds.) HCII 2019. LNCS, vol. 11588, pp. 3–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22335-9_1

    Chapter  Google Scholar 

  6. Yan, R., Ghose, S.: Forecast information and traditional retailer performance in a dual-channel competitive market. J. Bus. Res. 63(1), 77–83 (2010). https://doi.org/10.1016/j.jbusres.2009.02.017. https://www.sciencedirect.com/science/article/pii/S0148296309000460

  7. Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., Seaman, B.: Sales demand forecast in e-commerce using a long short-term memory neural network methodology. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11955, pp. 462–474. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36718-3_39

    Chapter  Google Scholar 

  8. Gürbüz, A., Aktaş, M.S.: Prediction of purchase intention on the e-commerce clickstream data. In: 2019 27th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2019). https://doi.org/10.1109/SIU.2019.8806311

  9. Fronzetti Colladon, A., Guardabascio, B., Innarella, R.: Using social network and semantic analysis to analyze online travel forums and forecast tourism demand. Decis. Supp. Syst. 123, 113075 (2019). https://doi.org/10.1016/j.dss.2019.113075. https://www.sciencedirect.com/science/article/pii/S0167923619301046

  10. Law, R., Li, G., Fong, D.K.C., Han, X.: Tourism demand forecasting: a deep learning approach. Ann. Tour. Res. 75, 410–423 (2019). https://doi.org/10.1016/j.annals.2019.01.014, https://www.sciencedirect.com/science/article/pii/S0160738319300143

  11. Tseng, K.K., Lin, R.F.Y., Zhou, H., Kurniajaya, K.J., Li, Q.: Price prediction of e-commerce products through internet sentiment analysis. Electron. Commer. Res. 18(1), 65–88 (2018). https://doi.org/10.1007/s10660-017-9272-9

    Article  Google Scholar 

  12. Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS ONE 12(7), e0180944 (2017)

    Article  Google Scholar 

  13. Aktas, M., Astekin, M.: Provenance aware run-time verification of things for self-healing internet of things applications. Concurr. Comput. Pract. Exp. (2019). https://doi.org/10.1002/cpe.4263

    Article  Google Scholar 

  14. Tufek, A., Aktas, M.S.: On the provenance extraction techniques from large scale log files: a case study for the numerical weather prediction models. In: Balis, B., et al. (eds.) Euro-Par 2020. LNCS, vol. 12480, pp. 249–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71593-9_20

    Chapter  Google Scholar 

  15. Tas, Y., Baeth, M., Aktas, M.: An approach to standalone provenance systems for big social provenance data. In: 2016 12th International Conference on Semantics, Knowledge and Grids (SKG), pp. 9–16 (2016)

    Google Scholar 

  16. Riveni, M., Nguyen, T., Aktas, M., Dustdar, S.: Application of provenance in social computing: a case study. Concurr. Comput.: Pract. Exp. 31(3), e4894 (2019)

    Article  Google Scholar 

  17. Baeth, M., Aktas, M.: An approach to custom privacy policy violation detection problems using big social provenance data. Concurr. Comput.: Pract. Exp. 30(21), e4690 (2018)

    Article  Google Scholar 

  18. Baeth, M., Aktas, M.: Detecting misinformation in social networks using provenance data. Concurr. Comput.: Pract. Exp. 31(3), e4793 (2019)

    Article  Google Scholar 

  19. Jensen, S., Plale, B., Aktas, M., Luo, Y., Chen, P., Conover, H.: Provenance capture and use in a satellite data processing pipeline. IEEE Trans. Geosci. Remote Sens. 51(11), 5090–5097 (2013). https://doi.org/10.1109/TGRS.2013.2266929

    Article  Google Scholar 

  20. Tufek, A., Gurbuz, A., Ekuklu, O.F., Aktas, M.S.: Provenance collection platform for the weather research and forecasting model. In: 2018 14th International Conference on Semantics, Knowledge and Grids (SKG), SKG ’18, 14th International Conference on Semantics, Knowledge and Grids (SKG), Guangzhou, China, IEEE, pp. 17–24 (2018). https://doi.org/10.1109/SKG.2018.00009

  21. Yazıcı, I., Karabulut, E., Aktas, M.: A data provenance visualization approach. In: The 14th International Conference on Semantics, Knowledge and Grids (2018)

    Google Scholar 

  22. Uygun, Y., Oguz, R., Olmezogullari, E., Aktas, M.: On the large-scale graph data processing for user interface testing in big data science projects. In: IEEE BigData 2020, pp. 2049–2056. IEEE (2020)

    Google Scholar 

  23. Olmezogullari, E., Aktas, M.: Representation of click-stream data sequences for learning user navigational behavior by using embeddings. In: In: IEEE BigData 2020, pp. 3173–3179. IEEE (2020)

    Google Scholar 

  24. Li, Y., Cao, H.: Prediction for tourism flow based on LSTM neural network. Procedia Comput. Sci. 129, 277–283 (2018)

    Article  Google Scholar 

  25. Chaovalit, P., Gangopadhyay, A., Karabatis, G., Chen, Z.: Discrete wavelet transform-based time series analysis and mining. ACM Comput. Surv. 43(2), 1–37 (2011). https://doi.org/10.1145/1883612.1883613

    Article  MATH  Google Scholar 

  26. Conejo, A.J., Plazas, M.A., Espinola, R., Molina, A.B.: Day-ahead electricity price forecasting using the wavelet transform and arima models. IEEE Trans. Power Syst. 20(2), 1035–1042 (2005). https://doi.org/10.1109/TPWRS.2005.846054

    Article  Google Scholar 

  27. Wang, L., Zhang, Z., Chen, J.: Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst. 32(4), 2673–2681 (2017). https://doi.org/10.1109/TPWRS.2016.2628873

    Article  Google Scholar 

  28. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  29. Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on CEEMDAN and LSTM. Physica A 519, 127–139 (2019)

    Article  Google Scholar 

  30. Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches. Energies 11(7), 1636 (2018)

    Article  Google Scholar 

  31. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  Google Scholar 

  32. Ramsey, J.B., Lampart, C.: The decomposition of economic relationships by time scale using wavelets: expenditure and income. Stud. Nonlinear Dyn. Econ. 3(1) (1998)

    Google Scholar 

  33. Chollet, F., et al.: Deep Learning with Python, vol. 361. Manning, New York (2018)

    Google Scholar 

Download references

Acknowledgments

This study is carried out using the data center and web crawler facilities of Cloud Computing and Big Data Research Laboratory (B3LAB) of TÜBİTAK BİLGEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Eğriboz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eğriboz, E., Aktaş, M.S. (2021). Price Forecasting with Deep Learning in Business to Consumer Markets. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12954. Springer, Cham. https://doi.org/10.1007/978-3-030-86979-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86979-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86978-6

  • Online ISBN: 978-3-030-86979-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics