Form, Function and Acoustics: Productive Assets Placement and Relationship Between the Urban Soundscape Patterns and Configuration | SpringerLink
Skip to main content

Form, Function and Acoustics: Productive Assets Placement and Relationship Between the Urban Soundscape Patterns and Configuration

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Urban acoustics is influenced by several noise sources and propagation effects, a multitude of factors that make sound-based analysis a rather complex endeavor. Nevertheless, the soundscape is an important feature in cities’ environments, as noise pollution affects spaces’ usage and quality of life. Computational methods have been used for soundscape analysis, however a combined evaluation of the relationships between acoustics, urban form, functions and movement logics is still in demand for urban planning. This paper summarizes the different computational methods used for soundscape analysis and focuses on the use of Geographic Information Systems to construct a comparative analysis, apposing spatial information of the acoustic maps, built-structures placement and distribution, and road networks configuration, of a productive agglomerate that extends throughout the provinces of Firenze (Florence) and Prato. The main objective is to unearth correlations between urban design, movement dynamics and the different noise pollution classes, highlighting the soundscape patterns in the built environment, with specific reference to the distribution of productive activities. Results aim for the creation of more detailed acoustic maps, improving spatial knowledge of this productive area for urban planning purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kang, J.: From understanding to designing soundscapes. Front. Archit. Civ. Eng. China 4, 403–417 (2010)

    Article  Google Scholar 

  2. Raimbault, M., Dubois, D.: Urban soundscapes: experiences and knowledge. Cities 22, 339–350 (2005)

    Article  Google Scholar 

  3. Hornikx, M.T.: questions concerning computational urban acoustics. Build. Environ. (2016). https://doi.org/10.1016/j.buildenv.2016.06.028

    Article  Google Scholar 

  4. Khan, J., Ketzel, M., Kakosimos, K., Sørensen, M., Jensen, S.S.: Road traffic air and noise pollution exposure assessment – a review of tools and techniques. Sci. Total Environ. 634, 661–676 (2018)

    Article  Google Scholar 

  5. Guedes, I.C.M., Bertoli, S.R., Zannin, P.H.T.: Influence of urban shapes on environmental noise: a case study in Aracaju - Brazil. Sci. Total Environ. 412–413, 66–76 (2011)

    Article  Google Scholar 

  6. Salomons, E.M., Berghauser Pont, M.: Urban traffic noise and the relation to urban density, form, and traffic elasticity. Landscape Urban Plann. 108, 2–16 (2012)

    Google Scholar 

  7. Tang, U.W., Wang, Z.S.: Influences of urban forms on traffic-induced noise and air pollution: results from a modelling system. Environ. Model. Softw. 22, 1750–1764 (2007)

    Article  Google Scholar 

  8. Oliveira, M.F., Silva, L.T.: How urban noise can be influenced by the urban form. 6th WSEAS International Conference on Cellular and Molecular Biology, Biophysics and Bioengineering, BIO 2010, 8th WSEAS International Conference on Environmental Ecosystems and Development, EED 2010, International Conference on Biosciences and Bioinformatics, ICBB 2010 I, pp. 31–36 (2010)

    Google Scholar 

  9. Zullo, F., Paolinelli, G., Valentina, F., Fiorini, L., Romano, B.: Urban development in Tuscany. Land uptake and landscapes changes. TeMA J. Land Use Mob. Environ. 8, 183–202 (2015)

    Google Scholar 

  10. Lakka, E., Malamos, A., Pavlakis, K.G., Ware, J.A.: Spatial sound rendering – a Survey. Int. J. Interact. Multimedia Artif. Intell. 5, 33 (2018)

    Google Scholar 

  11. Georgiou, F., Munoz, R.P., Rietdijk, F., Zachos, G.: Prediction and auralisation of urban sound environments. In: Urban Sound Planning - the Sonorus project 118 (DanagardLiTHO, 2016)

    Google Scholar 

  12. Charalampous, P., Michael, D.: Sound propagation in 3D spaces using computer graphics techniques. In: Proceedings of the 2014 International Conference on Virtual Systems and Multimedia, VSMM 2014, pp. 43–49 (2014) https://doi.org/10.1109/VSMM.2014.7136674

  13. European Parliament and Council of the European Union. Assessment and management of environmental noise (EU Directive). Official J. Eur. Commun. (2002). http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002L0049&from=EN%5Cn, http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32002L0049. https://doi.org/10.1016/j.jclepro.2010.02.014

  14. Toyoda, M. et al. Noise propagation Simulation. In: Sakuma T., Sakamoto S., Otsuru T. (eds.) Computational Simulation in Architectural and Environmental Acoustics, pp. 179–242. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-54454-8

  15. Kirkup, S.: The boundary element method in acoustics: a survey. Appl. Sci. 9, 48 (2019)

    Article  Google Scholar 

  16. Bashir, I., Carley, M.: Development of 3D boundary element method for the simulation of acoustic metamaterials/metasurfaces in mean flow for aerospace applications. Int. J. Aeroacoustics 19, 324–346 (2020)

    Article  Google Scholar 

  17. Murphy, D., Kolloniemi, A., Mullen, J., Shelley, S.: Acoustic modeling using the digital waveguide mesh. IEEE Signal Process. Mag. 24, 55–66 (2007)

    Article  Google Scholar 

  18. Pelat, A., Felix, S., Pagneux, V.: A coupled modal-finite element method for the wave propagation modeling in irregular open waveguides. J. Acoust. Soc. Am. 129, 1240–1249 (2011)

    Article  Google Scholar 

  19. Schoeder, S., Wall, W.A., Kronbichler, M.: ExWave: a high performance discontinuous galerkin solver for the acoustic wave equation. SoftwareX 9, 49–54 (2019)

    Article  Google Scholar 

  20. Buli, J., Xing, Y.: A discontinuous galerkin method for the aw-rascle traffic flow model on networks. J. Comput. Phys. 406, 109183 (2020)

    Article  MathSciNet  Google Scholar 

  21. Hornikx, M., Forssén, J.: The 2.5-dimensional equivalent sources method for directly exposed and shielded urban canyons. J. Acoust. Soc. Am. 122, 2532 (2007)

    Google Scholar 

  22. Gounot, Y.J.R., Musafir, R.E.: Simulation of scattered fields: some guidelines for the equivalent source method. J. Sound Vib. 330, 3698–3709 (2011)

    Article  Google Scholar 

  23. Wang, H., Cai, M., Cui, H.: Simulation and analysis of road traffic noise among urban buildings using spatial subdivision-based beam tracing method. Int. J. Environ. Res. Public Health 16(14), 2491 (2019)

    Article  Google Scholar 

  24. Cheinet, S., Ehrhardt, L., Broglin, T.: Impulse source localization in an urban environment: time reversal versus time matching. Acoust. Soc. Am. 139, 128–140 (2016)

    Article  Google Scholar 

  25. Oikawa, T., Sonoda, J., Honma, N., Sato, M.: Analysis of lighting electromagnetic field on numerical terrain and urban model using three-dimensional MW-FDTD parallel computation. Electron. Commun. Japan 100, 76–82 (2017)

    Article  Google Scholar 

  26. Molerón, M., Félix, S., Pagneux, V., Richoux, O.: Sound propagation in periodic urban areas. J. Appl. Phys. 111, 114906 (2012)

    Google Scholar 

  27. Papadakis, N.M., Stavroulakis, G.E.: Finite element method for the estimation of insertion loss of noise barriers: comparison with various formulae (2D). Urban Sci. 4, 77 (2020)

    Article  Google Scholar 

  28. Fraser, N., Hall, R.: Simulating acoustic propagation using a lattice boltzmann model of incompressible fluid flow, pp. 42–47 (2006)

    Google Scholar 

  29. Viggen, E.M.: The lattice Boltzmann method with applications in acoustics. Master’s thesis, Norwegian University of Science, pp. 1–5 (2009)

    Google Scholar 

  30. Brès, G.A., Pérot, F., Freed, D.: Properties of the Lattice-Boltzmann method for acoustics. In: 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), pp. 11–13 (2009). https://doi.org/10.2514/6.2009-3395

  31. Doc, J.-B., Lihoreau, B., Félix, S., Faure, C., Dubois, G.: Three-dimensional parabolic equation model for low frequency sound propagation in irregular urban canyons. J. Acoust. Soc. Am. 137, 310–320 (2015)

    Article  Google Scholar 

  32. Ow, L.F., Ghosh, S.: Urban cities and road traffic noise: reduction through vegetation. Appl. Acoust. 120, 15–20 (2017)

    Article  Google Scholar 

  33. van Renterghem, T., Botteldooren, D., Verheyen, K.: Road traffic noise shielding by vegetation belts of limited depth. J. Sound Vib. 331, 2404–2425 (2012)

    Article  Google Scholar 

  34. Muñoz, R.P., Hornikx, M.: Hybrid fourier pseudospectral/discontinuous galerkin time-domain method for wave propagation. J. Comput. Phy. 348, 416–432 (2017). https://doi.org/10.1016/j.jcp.2017.07.046

    Article  MathSciNet  MATH  Google Scholar 

  35. Stevens, F., Murphy, D.T., Savioja, L., Valimaki, V.: Modeling sparsely reflecting outdoor acoustic scenes using the waveguide web. IEEE/ACM Trans. Audio Speech Lang. Process. 25, 1566–1578 (2017)

    Article  Google Scholar 

  36. Malczewski, J.: GIS-based multicriteria decision analysis: a survey of the literature. Int. J. Geogr. Inf. Sci. 20, 703–726 (2006)

    Article  Google Scholar 

  37. Servigne, S., Laurini, R., Kang, M.-A., Li, K.J.: First specifications of an information system for urban soundscape. In: Proceedings IEEE International Conference on Multimedia Computing and Systems, vol. 2, pp. 262–266 (1999)

    Google Scholar 

  38. Krygier, J.B.: Sound and geographic visualization. In: Modern Cartography Series, vol. 2 (Elsevier Science Ltd, 1994)

    Google Scholar 

  39. Zannin, P.H.T., de Sant’Ana, D.Q.: Noise mapping at different stages of a freeway redevelopment project - A case study in Brazil. Appl. Acoust. 72, 479–486 (2011)

    Google Scholar 

  40. Hossam Eldien, H.: Noise mapping in urban environments: application at Suez city center. In: 2009 International Conference on Computers and Industrial Engineering, CIE 2009, pp. 1722–1727 (2009). https://doi.org/10.1109/iccie.2009.5223696

  41. Bilaşco, Ş, Govor, C., Roşca, S., Vescan, I., Filip, S., Fodorean, I.: GIS model for identifying urban areas vulnerable to noise pollution: case study. Front. Earth Sci. 11(2), 214–228 (2017). https://doi.org/10.1007/s11707-017-0615-6

    Article  Google Scholar 

  42. Garcia, J.S., et al.: Spatial statistical analysis of urban noise data from a WASN gathered by an IoT system: application to a small city. Appl. Sci. (Switzerland) 6(12), 380 (2016)

    Google Scholar 

  43. Cai, M., Zou, J., Xie, J., Ma, X.: Road traffic noise mapping in Guangzhou using GIS and GPS. Appl. Acoust. 87, 94–102 (2015)

    Article  Google Scholar 

  44. Huang, B., Pan, Z., Liu, Z., Hou, G., Yang, H.: Acoustic amenity analysis for high-rise building along urban expressway: modeling traffic noise vertical propagation using neural networks. Transp. Res. Part D 53, 63–77 (2017)

    Article  Google Scholar 

  45. Bello, J.P., et al.: Sonyc. Commun. ACM 62, 68–77 (2019)

    Article  Google Scholar 

  46. QGIS, Hannover, version 3.16 (2020). http://www.qgis.org/en/site/index.html

  47. Regione Toscana, Direzione Urbanistica e Politiche Abitative - Sistema Informativo Territoriale e Ambientale – SITA.: Edificato 2k, 10k 1988–2013. (2019b). http://www.502.regione.toscana.it/geoscopio/cartoteca.html

  48. Toscana, R.: (2019b) Direzione Urbanistica e Politiche Abitative - Sistema Informativo Territoriale e Ambientale – SITA.: Grafo stradario e ferroviario della Regione Toscana - Itnet. http://www.502.regione.toscana.it/geoscopio/cartoteca.html

  49. Turner, A.: Angular Analysis. In: Proceedings of the 3rd International Symposium on Space Syntax, pp. 7–11. Georgia Institute of Technology, Atlanta, Georgia (2001)

    Google Scholar 

  50. Turner, A.: From axial to road-centre lines: a new representation for space syntax and a new model of route choice for transport network analysis. Environ. Plann. B. Plann. Des. 34, 539–555 (2007)

    Article  Google Scholar 

  51. Hillier, B., Yang, T., Turner, A.: Normalising least angle choice in depthmap - and how it opens up new perspectives on the global and local analysis of city space. J. Space Synt. 3(2), 155–193 (2012)

    Google Scholar 

  52. Toscana, R.: Direzione Urbanistica e Politiche Abitative - Sistema Informativo Territoriale e Ambientale – SITA.: Piano Comunale di Classificazione Acustica - PCCA; art 4 l.r. 89/98 - http://www.502.regione.toscana.it/geoscopio/cartoteca.html(2019c)

  53. Luzzi, S., Bartalucci, C., Radicchi, A., Brusci, L., Brambilla, G. Participative soundscape projects in Italian contexts. In: Inter-Noise 2019 MADRID - 48th International Congress and Exhibition on Noise Control Engineering (2019)

    Google Scholar 

  54. Altafini, D., Cutini, V.: Homothetic behavior of betweenness centralities: a multiscale alternative approach to relate cities and large regional structures. Sustainability 12(19), 7925 (2020). https://doi.org/10.3390/su12197925

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okba Benameur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benameur, O., Altafini, D., Cutini, V. (2021). Form, Function and Acoustics: Productive Assets Placement and Relationship Between the Urban Soundscape Patterns and Configuration. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86973-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86972-4

  • Online ISBN: 978-3-030-86973-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics