Abstract
Urban acoustics is influenced by several noise sources and propagation effects, a multitude of factors that make sound-based analysis a rather complex endeavor. Nevertheless, the soundscape is an important feature in cities’ environments, as noise pollution affects spaces’ usage and quality of life. Computational methods have been used for soundscape analysis, however a combined evaluation of the relationships between acoustics, urban form, functions and movement logics is still in demand for urban planning. This paper summarizes the different computational methods used for soundscape analysis and focuses on the use of Geographic Information Systems to construct a comparative analysis, apposing spatial information of the acoustic maps, built-structures placement and distribution, and road networks configuration, of a productive agglomerate that extends throughout the provinces of Firenze (Florence) and Prato. The main objective is to unearth correlations between urban design, movement dynamics and the different noise pollution classes, highlighting the soundscape patterns in the built environment, with specific reference to the distribution of productive activities. Results aim for the creation of more detailed acoustic maps, improving spatial knowledge of this productive area for urban planning purposes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kang, J.: From understanding to designing soundscapes. Front. Archit. Civ. Eng. China 4, 403–417 (2010)
Raimbault, M., Dubois, D.: Urban soundscapes: experiences and knowledge. Cities 22, 339–350 (2005)
Hornikx, M.T.: questions concerning computational urban acoustics. Build. Environ. (2016). https://doi.org/10.1016/j.buildenv.2016.06.028
Khan, J., Ketzel, M., Kakosimos, K., Sørensen, M., Jensen, S.S.: Road traffic air and noise pollution exposure assessment – a review of tools and techniques. Sci. Total Environ. 634, 661–676 (2018)
Guedes, I.C.M., Bertoli, S.R., Zannin, P.H.T.: Influence of urban shapes on environmental noise: a case study in Aracaju - Brazil. Sci. Total Environ. 412–413, 66–76 (2011)
Salomons, E.M., Berghauser Pont, M.: Urban traffic noise and the relation to urban density, form, and traffic elasticity. Landscape Urban Plann. 108, 2–16 (2012)
Tang, U.W., Wang, Z.S.: Influences of urban forms on traffic-induced noise and air pollution: results from a modelling system. Environ. Model. Softw. 22, 1750–1764 (2007)
Oliveira, M.F., Silva, L.T.: How urban noise can be influenced by the urban form. 6th WSEAS International Conference on Cellular and Molecular Biology, Biophysics and Bioengineering, BIO 2010, 8th WSEAS International Conference on Environmental Ecosystems and Development, EED 2010, International Conference on Biosciences and Bioinformatics, ICBB 2010 I, pp. 31–36 (2010)
Zullo, F., Paolinelli, G., Valentina, F., Fiorini, L., Romano, B.: Urban development in Tuscany. Land uptake and landscapes changes. TeMA J. Land Use Mob. Environ. 8, 183–202 (2015)
Lakka, E., Malamos, A., Pavlakis, K.G., Ware, J.A.: Spatial sound rendering – a Survey. Int. J. Interact. Multimedia Artif. Intell. 5, 33 (2018)
Georgiou, F., Munoz, R.P., Rietdijk, F., Zachos, G.: Prediction and auralisation of urban sound environments. In: Urban Sound Planning - the Sonorus project 118 (DanagardLiTHO, 2016)
Charalampous, P., Michael, D.: Sound propagation in 3D spaces using computer graphics techniques. In: Proceedings of the 2014 International Conference on Virtual Systems and Multimedia, VSMM 2014, pp. 43–49 (2014) https://doi.org/10.1109/VSMM.2014.7136674
European Parliament and Council of the European Union. Assessment and management of environmental noise (EU Directive). Official J. Eur. Commun. (2002). http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002L0049&from=EN%5Cn, http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32002L0049. https://doi.org/10.1016/j.jclepro.2010.02.014
Toyoda, M. et al. Noise propagation Simulation. In: Sakuma T., Sakamoto S., Otsuru T. (eds.) Computational Simulation in Architectural and Environmental Acoustics, pp. 179–242. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-54454-8
Kirkup, S.: The boundary element method in acoustics: a survey. Appl. Sci. 9, 48 (2019)
Bashir, I., Carley, M.: Development of 3D boundary element method for the simulation of acoustic metamaterials/metasurfaces in mean flow for aerospace applications. Int. J. Aeroacoustics 19, 324–346 (2020)
Murphy, D., Kolloniemi, A., Mullen, J., Shelley, S.: Acoustic modeling using the digital waveguide mesh. IEEE Signal Process. Mag. 24, 55–66 (2007)
Pelat, A., Felix, S., Pagneux, V.: A coupled modal-finite element method for the wave propagation modeling in irregular open waveguides. J. Acoust. Soc. Am. 129, 1240–1249 (2011)
Schoeder, S., Wall, W.A., Kronbichler, M.: ExWave: a high performance discontinuous galerkin solver for the acoustic wave equation. SoftwareX 9, 49–54 (2019)
Buli, J., Xing, Y.: A discontinuous galerkin method for the aw-rascle traffic flow model on networks. J. Comput. Phys. 406, 109183 (2020)
Hornikx, M., Forssén, J.: The 2.5-dimensional equivalent sources method for directly exposed and shielded urban canyons. J. Acoust. Soc. Am. 122, 2532 (2007)
Gounot, Y.J.R., Musafir, R.E.: Simulation of scattered fields: some guidelines for the equivalent source method. J. Sound Vib. 330, 3698–3709 (2011)
Wang, H., Cai, M., Cui, H.: Simulation and analysis of road traffic noise among urban buildings using spatial subdivision-based beam tracing method. Int. J. Environ. Res. Public Health 16(14), 2491 (2019)
Cheinet, S., Ehrhardt, L., Broglin, T.: Impulse source localization in an urban environment: time reversal versus time matching. Acoust. Soc. Am. 139, 128–140 (2016)
Oikawa, T., Sonoda, J., Honma, N., Sato, M.: Analysis of lighting electromagnetic field on numerical terrain and urban model using three-dimensional MW-FDTD parallel computation. Electron. Commun. Japan 100, 76–82 (2017)
Molerón, M., Félix, S., Pagneux, V., Richoux, O.: Sound propagation in periodic urban areas. J. Appl. Phys. 111, 114906 (2012)
Papadakis, N.M., Stavroulakis, G.E.: Finite element method for the estimation of insertion loss of noise barriers: comparison with various formulae (2D). Urban Sci. 4, 77 (2020)
Fraser, N., Hall, R.: Simulating acoustic propagation using a lattice boltzmann model of incompressible fluid flow, pp. 42–47 (2006)
Viggen, E.M.: The lattice Boltzmann method with applications in acoustics. Master’s thesis, Norwegian University of Science, pp. 1–5 (2009)
Brès, G.A., Pérot, F., Freed, D.: Properties of the Lattice-Boltzmann method for acoustics. In: 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), pp. 11–13 (2009). https://doi.org/10.2514/6.2009-3395
Doc, J.-B., Lihoreau, B., Félix, S., Faure, C., Dubois, G.: Three-dimensional parabolic equation model for low frequency sound propagation in irregular urban canyons. J. Acoust. Soc. Am. 137, 310–320 (2015)
Ow, L.F., Ghosh, S.: Urban cities and road traffic noise: reduction through vegetation. Appl. Acoust. 120, 15–20 (2017)
van Renterghem, T., Botteldooren, D., Verheyen, K.: Road traffic noise shielding by vegetation belts of limited depth. J. Sound Vib. 331, 2404–2425 (2012)
Muñoz, R.P., Hornikx, M.: Hybrid fourier pseudospectral/discontinuous galerkin time-domain method for wave propagation. J. Comput. Phy. 348, 416–432 (2017). https://doi.org/10.1016/j.jcp.2017.07.046
Stevens, F., Murphy, D.T., Savioja, L., Valimaki, V.: Modeling sparsely reflecting outdoor acoustic scenes using the waveguide web. IEEE/ACM Trans. Audio Speech Lang. Process. 25, 1566–1578 (2017)
Malczewski, J.: GIS-based multicriteria decision analysis: a survey of the literature. Int. J. Geogr. Inf. Sci. 20, 703–726 (2006)
Servigne, S., Laurini, R., Kang, M.-A., Li, K.J.: First specifications of an information system for urban soundscape. In: Proceedings IEEE International Conference on Multimedia Computing and Systems, vol. 2, pp. 262–266 (1999)
Krygier, J.B.: Sound and geographic visualization. In: Modern Cartography Series, vol. 2 (Elsevier Science Ltd, 1994)
Zannin, P.H.T., de Sant’Ana, D.Q.: Noise mapping at different stages of a freeway redevelopment project - A case study in Brazil. Appl. Acoust. 72, 479–486 (2011)
Hossam Eldien, H.: Noise mapping in urban environments: application at Suez city center. In: 2009 International Conference on Computers and Industrial Engineering, CIE 2009, pp. 1722–1727 (2009). https://doi.org/10.1109/iccie.2009.5223696
Bilaşco, Ş, Govor, C., Roşca, S., Vescan, I., Filip, S., Fodorean, I.: GIS model for identifying urban areas vulnerable to noise pollution: case study. Front. Earth Sci. 11(2), 214–228 (2017). https://doi.org/10.1007/s11707-017-0615-6
Garcia, J.S., et al.: Spatial statistical analysis of urban noise data from a WASN gathered by an IoT system: application to a small city. Appl. Sci. (Switzerland) 6(12), 380 (2016)
Cai, M., Zou, J., Xie, J., Ma, X.: Road traffic noise mapping in Guangzhou using GIS and GPS. Appl. Acoust. 87, 94–102 (2015)
Huang, B., Pan, Z., Liu, Z., Hou, G., Yang, H.: Acoustic amenity analysis for high-rise building along urban expressway: modeling traffic noise vertical propagation using neural networks. Transp. Res. Part D 53, 63–77 (2017)
Bello, J.P., et al.: Sonyc. Commun. ACM 62, 68–77 (2019)
QGIS, Hannover, version 3.16 (2020). http://www.qgis.org/en/site/index.html
Regione Toscana, Direzione Urbanistica e Politiche Abitative - Sistema Informativo Territoriale e Ambientale – SITA.: Edificato 2k, 10k 1988–2013. (2019b). http://www.502.regione.toscana.it/geoscopio/cartoteca.html
Toscana, R.: (2019b) Direzione Urbanistica e Politiche Abitative - Sistema Informativo Territoriale e Ambientale – SITA.: Grafo stradario e ferroviario della Regione Toscana - Itnet. http://www.502.regione.toscana.it/geoscopio/cartoteca.html
Turner, A.: Angular Analysis. In: Proceedings of the 3rd International Symposium on Space Syntax, pp. 7–11. Georgia Institute of Technology, Atlanta, Georgia (2001)
Turner, A.: From axial to road-centre lines: a new representation for space syntax and a new model of route choice for transport network analysis. Environ. Plann. B. Plann. Des. 34, 539–555 (2007)
Hillier, B., Yang, T., Turner, A.: Normalising least angle choice in depthmap - and how it opens up new perspectives on the global and local analysis of city space. J. Space Synt. 3(2), 155–193 (2012)
Toscana, R.: Direzione Urbanistica e Politiche Abitative - Sistema Informativo Territoriale e Ambientale – SITA.: Piano Comunale di Classificazione Acustica - PCCA; art 4 l.r. 89/98 - http://www.502.regione.toscana.it/geoscopio/cartoteca.html(2019c)
Luzzi, S., Bartalucci, C., Radicchi, A., Brusci, L., Brambilla, G. Participative soundscape projects in Italian contexts. In: Inter-Noise 2019 MADRID - 48th International Congress and Exhibition on Noise Control Engineering (2019)
Altafini, D., Cutini, V.: Homothetic behavior of betweenness centralities: a multiscale alternative approach to relate cities and large regional structures. Sustainability 12(19), 7925 (2020). https://doi.org/10.3390/su12197925
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Benameur, O., Altafini, D., Cutini, V. (2021). Form, Function and Acoustics: Productive Assets Placement and Relationship Between the Urban Soundscape Patterns and Configuration. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_49
Download citation
DOI: https://doi.org/10.1007/978-3-030-86973-1_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86972-4
Online ISBN: 978-3-030-86973-1
eBook Packages: Computer ScienceComputer Science (R0)