Abstract
The exponential form of the original Phan-Thien and Tanner (PTT) model is often used to study complex viscoelastic fluids. Recently, a generalised version of the PTT model, that uses the Mittag-Leffler function to compute a new function of the trace of the stress tensor, was proposed. This new model adds one or two additional fitting parameters that allow for greater fitting capability. In this paper, we propose two optimisation problems for estimating the model parameters when fitting experimental data in shear (storage modulus, loss modulus, shear viscosity). We also propose a numerical sequential approach for solving one of these problems. The optimal values for the parameters produced by the optimisation approach allow the model to reproduce almost exactly the experimental data.
Supported by FCT - Fundação para a Ciência e a Tecnologia, through projects UIDB/00013/2020 and UIDP/00013/2020, and CMAT - Centre of Mathematics, University of Minho.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Holzapfel, G.: Nonlinear Solid Mechanics. A continuum Approach for Engineering (2001)
Phan-Thien, N., Tanner, R.I.: New constitutive equation derived from network theory. J. Nonnewton. Fluid Mech. 2(4), 353–365 (1977)
Phan-Thien, N.: A nonlinear network viscoelastic model. J. Rheol. 22(3), 259–283 (1978)
Tanner, R.I., Huilgol, R.R.: On a classification scheme for flow fields. Rheologica Acta 14(11), 959–962 (1975). https://doi.org/10.1007/BF01516297
Ferrás, L.L., Morgado, M.L., Rebelo, M., Mckinley, G.H., Afonso, A.: A generalized phan-thien - tanner model. J. Nonnewton. Fluid Mech. 269, 88–99 (2019)
Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. vol. 198, Elsevier, San Diego (1998)
Huilgol, R.R., Phan-Thien, N.: Fluid Mechanics of Viscoelasticity: General Principles, Constitutive Modelling, Analytical and Numerical Techniques. Elsevier, Amsterdam (1997)
Alves, M.A., Pinho, F.T., Oliveira, P.J.: Study of steady pipe and channel flows of a single-mode phan-thien - tanner fluid. J. Nonnewton. Fluid Mech. 101(1–3), 55–76 (2001)
Ansari, M., Hatzikiriakos, S.G., Mitsoulis, E.: Slip effects in HDPE flows. J. Nonnewton. Fluid Mech. 167, 18–29 (2012)
Nocedal, J., Wächter, A., Waltz, R.A: Adaptive barrier strategies for nonlinear interior methods. SIAM J. Optim. 19(4), 1674–1693 (2009)
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: local convergence. SIAM J. Optim. 16(1), 32–48 (2005)
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16(1), 1–31 (2005)
Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
Wächter, A.: n interior point algorithm for large-scale nonlinear optimization with applications in process engineering. PhD thesis. Carnegie Mellon University, Pittsburgh, PA, USA (2002)
Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)
Gill, P.E., Murray, W., Wright, M.H.: Pract. Optim. Academic Press, London (1981)
Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22(3), 297–309 (1977)
Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 144–157. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0067703
Powell, M.J.D., The convergence of variable metric methods for nonlinearly constrained optimization calculations. In: Nonlinear Programming, vol. 3, pp. 27–63. Academic Press (1978)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Costa, M.F.P., Coelho, C., Ferrás, L.L. (2021). Optimisation Approach for Parameter Estimation of the Generalised PTT Viscoelastic Model. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-86973-1_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86972-4
Online ISBN: 978-3-030-86973-1
eBook Packages: Computer ScienceComputer Science (R0)