Traffic Modelling Through a LSTM Variational Auto Encoder Approach: Preliminary Results | SpringerLink
Skip to main content

Traffic Modelling Through a LSTM Variational Auto Encoder Approach: Preliminary Results

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

The work in progress on a LSTM sequence to sequence variational autoencoder generative model is presented. The architecture is trained on a floating car data dataset in order to grasp the statistical features of the traffic demand in the city of Rome. An analysis of parameters influence is furnished. The generated trajectories are briefly compared with the ones in the dataset. Further work direction is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. (TIST) 5(3), 38 (2014)

    Google Scholar 

  2. Chu, Z., Cheng, L., Chen, H.: A review of activity-based travel demand modeling. In: Proceedings of the Twelfth COTA International Conference of Transportation Professionals, pp. 48–59 (2012). https://doi.org/10.1061/9780784412442.006

  3. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  4. Song, C., Qu, Z., Blumm, N., Barabasi, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Article  MathSciNet  Google Scholar 

  5. Alessandretti, L., Sapiezynski, P., Lehmann, S., Baronchelli, A.: Evidence for a conserved quantity in human mobility. Nat. Hum. Behav. 2, 485–491 (2018). https://doi.org/10.1038/s41562-018-0364-x

    Article  Google Scholar 

  6. Harshvardhan, G.M., Gourisaria, M.K., Pandey, M., Rautaray, S.S.: A comprehensive survey and analysis of generative models in machine learning. Comput. Sci. Rev. 38, 100285, ISSN 1574–0137 (2020). https://doi.org/10.1016/j.cosrev.2020.100285

  7. Yin, M., Sheehan, M., Feygin, S., Paiement, J., Pozdnoukhov, A.: A generative model of urban activities from cellular data. IEEE Trans. Intell. Transp. Syst. 19(6), 1682–1696 (2018). https://doi.org/10.1109/TITS.2017.2695438

    Article  Google Scholar 

  8. Lin, Z., Yin, M., Feygin, S., Transportation, M.S., Paiement, J., Cee, A.P.: Deep generative models of urban mobility. In: Proceedings of KDD 2017, 13–17 August 2017, Halifax, Nova Scotia, Canada (2017)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  10. Graves, A.: Generating sequences with recurrent neural networks. arXiv:1308.0850 (2013)

  11. Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: Draw: a recurrent neural network for image generation. arXiv:1502.04623 (2015)

  12. Huang, D. et al.: A variational autoencoder based generative model of urban human mobility. In: IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 425–430, San Jose, CA, USA (2019). https://doi.org/10.1109/MIPR.2019.00086

  13. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Found. Trends Mach. Learn. 12, 307–392 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partly carried out in the framework of the Triennial Plan 2019–2021 of the National Research on the Electrical System (Piano Triennale 2019–2021 della Ricerca di sistema elettrico nazionale), funded by the Italian Ministry of Ecologic Transition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Taraglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiesa, S., Taraglio, S. (2021). Traffic Modelling Through a LSTM Variational Auto Encoder Approach: Preliminary Results. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86960-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86959-5

  • Online ISBN: 978-3-030-86960-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics