Abstract
The work in progress on a LSTM sequence to sequence variational autoencoder generative model is presented. The architecture is trained on a floating car data dataset in order to grasp the statistical features of the traffic demand in the city of Rome. An analysis of parameters influence is furnished. The generated trajectories are briefly compared with the ones in the dataset. Further work direction is provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. (TIST) 5(3), 38 (2014)
Chu, Z., Cheng, L., Chen, H.: A review of activity-based travel demand modeling. In: Proceedings of the Twelfth COTA International Conference of Transportation Professionals, pp. 48–59 (2012). https://doi.org/10.1061/9780784412442.006
Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)
Song, C., Qu, Z., Blumm, N., Barabasi, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)
Alessandretti, L., Sapiezynski, P., Lehmann, S., Baronchelli, A.: Evidence for a conserved quantity in human mobility. Nat. Hum. Behav. 2, 485–491 (2018). https://doi.org/10.1038/s41562-018-0364-x
Harshvardhan, G.M., Gourisaria, M.K., Pandey, M., Rautaray, S.S.: A comprehensive survey and analysis of generative models in machine learning. Comput. Sci. Rev. 38, 100285, ISSN 1574–0137 (2020). https://doi.org/10.1016/j.cosrev.2020.100285
Yin, M., Sheehan, M., Feygin, S., Paiement, J., Pozdnoukhov, A.: A generative model of urban activities from cellular data. IEEE Trans. Intell. Transp. Syst. 19(6), 1682–1696 (2018). https://doi.org/10.1109/TITS.2017.2695438
Lin, Z., Yin, M., Feygin, S., Transportation, M.S., Paiement, J., Cee, A.P.: Deep generative models of urban mobility. In: Proceedings of KDD 2017, 13–17 August 2017, Halifax, Nova Scotia, Canada (2017)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Graves, A.: Generating sequences with recurrent neural networks. arXiv:1308.0850 (2013)
Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: Draw: a recurrent neural network for image generation. arXiv:1502.04623 (2015)
Huang, D. et al.: A variational autoencoder based generative model of urban human mobility. In: IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 425–430, San Jose, CA, USA (2019). https://doi.org/10.1109/MIPR.2019.00086
Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Found. Trends Mach. Learn. 12, 307–392 (2019)
Acknowledgements
This work has been partly carried out in the framework of the Triennial Plan 2019–2021 of the National Research on the Electrical System (Piano Triennale 2019–2021 della Ricerca di sistema elettrico nazionale), funded by the Italian Ministry of Ecologic Transition.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chiesa, S., Taraglio, S. (2021). Traffic Modelling Through a LSTM Variational Auto Encoder Approach: Preliminary Results. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-86960-1_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86959-5
Online ISBN: 978-3-030-86960-1
eBook Packages: Computer ScienceComputer Science (R0)