Handling Climate Change Using Counterfactuals: Using Counterfactuals in Data Augmentation to Predict Crop Growth in an Uncertain Climate Future | SpringerLink
Skip to main content

Handling Climate Change Using Counterfactuals: Using Counterfactuals in Data Augmentation to Predict Crop Growth in an Uncertain Climate Future

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12877))

Included in the following conference series:

Abstract

Climate change poses a major challenge to humanity, especially in its impact on agriculture, a challenge that a responsible AI should meet. In this paper, we examine a CBR system (PBI-CBR) designed to aid sustainable dairy farming by supporting grassland management, through accurate crop growth prediction. As climate changes, PBI-CBR’s historical cases become less useful in predicting future grass growth. Hence, we extend PBI-CBR using data augmentation, to specifically handle disruptive climate events, using a counterfactual method (from XAI). Study 1 shows that historical, extreme climate-events (climate outlier cases) tend to be used by PBI-CBR to predict grass growth during climate disrupted periods. Study 2 shows that synthetic outliers, generated as counterfactuals on an outlier-boundary, improve the predictive accuracy of PBI-CBR, during the drought of 2018. This study also shows that an case-based counterfactual method does better than a benchmark, constraint-guided method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note, this is after pre-processing to remove noisy cases (originally, N = 138,970).

  2. 2.

    A unique outlier is a case with an extreme value on any of its weather features.

  3. 3.

    Similar results were found for tests of 2017, though less marked, as that year has fewer disruptive events: PBI-CBRO (MAE = 18.58 kg/DM/ha) did better than PBI-CBREX (MAE = 18.62 kg /DM/ha) without the climate outliers, t(18610) = 1.9, p < 0.05, one-tailed.

References

  1. Rosenzweig, C., Iglesias, A., Yang, X.B., Epstein, P.R., Chivian, E.: Climate Change and U.S. Agriculture. centre for health and the global environment. Harvard Medical School, Boston, MA, USA (2000)

    Google Scholar 

  2. Kenny, E.M., et al.: Predicting grass growth for sustainable dairy farming: a CBR system using bayesian case-exclusion and post-hoc, personalized explanation-by-example (XAI). In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 172–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_12

    Chapter  Google Scholar 

  3. Kenny, E.M., et al.: Bayesian case-exclusion for sustainable farming. In: IJCAI-20 (2020)

    Google Scholar 

  4. Keane, M.T., Smyth, B.: Good counterfactuals and where to find them: a case-based technique for generating counterfactuals for explainable AI (XAI). In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 163–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2_11

    Chapter  Google Scholar 

  5. EU Parliament Briefing on the EU dairy sector (2018). https://www.europarl.europa.eu/RegData/etudes/BRIE/2018/630345/EPRS_BRI(2018)630345_EN.pdf

  6. Altieri, M.A.: Agroecology: The Science of Sustainable Agriculture. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  7. Teagasc: The Dairy Carbon Navigator: Improving carbon efficiency on Irish dairy farms

    Google Scholar 

  8. Ruelle, E., Hennessy, D., Delaby, L.: Development of the Moorepark St Gilles grass growth model (MoSt GG model). Eur. J. Agron. 99, 80–91 (2018)

    Article  Google Scholar 

  9. Hanrahan, L., et al.: PastureBase Ireland. Comput. Electron. Agric. 136, 193–201 (2017)

    Article  Google Scholar 

  10. Hurtado-Uria, C., Hennessy, D., Shalloo, L., O’Connor, D., Delaby, L.: Relationships between meteorological data and grass growth over time in the south of Ireland. Ir. Geogr. 46(3), 175–201 (2013)

    Article  Google Scholar 

  11. Karimi, A.H., Barthe, G., Schölkopf, B., Valera, I.: A survey of algorithmic recourse: definitions, formulations, solutions, and prospects. arXiv preprint arXiv:2010.04050 (2020)

  12. Keane, M.T., Kenny, E.M., Delaney, E., Smyth, B.: If only we had better counterfactual explanations. In: IJCAI-21 (2021)

    Google Scholar 

  13. Dodge, J., Liao, Q.V., Zhang, Y., Bellamy, R.K., Dugan, C.: Explaining models. In: IUI-19, pp. 275–285 (2019)

    Google Scholar 

  14. Nugent, C., Doyle, D., Cunningham, P.: Gaining insight through case-based explanation. J. Intell. Inf. Syst. 32(3), 267–295 (2009)

    Article  Google Scholar 

  15. McKenna, E., Smyth, B.: Competence-guided case-base editing techniques. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 186–197. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44527-7_17

    Chapter  Google Scholar 

  16. Dasarathy, B.V.: Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design. IEEE Trans. Syst. Man Cybern. 24(3), 511–517 (1994)

    Article  Google Scholar 

  17. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. J. L. Tech. 31, 841 (2018)

    Google Scholar 

  18. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: FAT*20, pp. 607–617 (2020)

    Google Scholar 

  19. Schleich, M., Geng, Z., Zhang, Y., Suciu, D.: GeCo: quality counterfactual explanations in real time. arXiv preprint arXiv:2101.01292 (2021)

  20. Smyth, B., Keane, M.T.: A few good counterfactuals. arXiv preprint:2101.09056 (2021)

    Google Scholar 

  21. Smyth, B., Keane, M.T.: Remembering to forget. In: Proceedings of the 14th international Joint Conference on Artificial intelligence (IJCAI-95), pp. 377–382 (1995)

    Google Scholar 

  22. Hasan, M.G.M.M.: Use case of counterfactual examples: data augmentation. In: Proceedings of Student Research and Creative Inquiry Day (2020)

    Google Scholar 

  23. Subbaswamy, A., Saria, S.: Counterfactual normalization: proactively addressing dataset shift using causal mechanisms. In: UAI-18, pp. 947–957 (2018)

    Google Scholar 

  24. Zeng, X., Li, Y., Zhai, Y., Zhang, Y.: Counterfactual generator. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 7270–7280 (2020)

    Google Scholar 

  25. Pitis, S., Creager, E., Garg, A.: Counterfactual data augmentation using locally factored dynamics. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  26. Förster, M., Klier, M., Kluge, K., Sigler, I.: Fostering human agency: a process for the design of user-centric XAI systems. In: ICIS-2020, paper 1963 (2020)

    Google Scholar 

  27. Temraz, M., Keane, M.T.: Solving the class imbalance problem using a counterfactual method for data augmentation. Under review (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Keane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Temraz, M., Kenny, E.M., Ruelle, E., Shalloo, L., Smyth, B., Keane, M.T. (2021). Handling Climate Change Using Counterfactuals: Using Counterfactuals in Data Augmentation to Predict Crop Growth in an Uncertain Climate Future. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds) Case-Based Reasoning Research and Development. ICCBR 2021. Lecture Notes in Computer Science(), vol 12877. Springer, Cham. https://doi.org/10.1007/978-3-030-86957-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86957-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86956-4

  • Online ISBN: 978-3-030-86957-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics